Skip to main content

MD-TransUNet: TransUNet with Multi-attention and Dilated Convolution for Brain Stroke Lesion Segmentation

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

The accurate segmentation of stroke lesion regions holds immense significance in shaping treatment strategies and rehabilitation protocols. Due to the large difference in the volume of stroke lesion areas and the great similarity between lesion areas and normal tissues, most of the existing methods for lesion segmentation cannot deal with these problems well. This paper proposes a novel network named MD-TransUNet for the segmentation of stroke lesions, whose framework is based on the UNet architecture. To fully obtain deep image features, it uses ResNet50 for downsampling. MD (multi-dilated) module is employed as the skip connection to gain more receptive fields. Different receptive fields can adapt to varying volumes of lesion areas. Then, a feature extraction module with multi-level attention mechanism is designed using ConvLSTM, non-local spatial attention, and channel attention modules to suppress useless information expression in skip connections and upsampling processes while focusing more on effective spatial and channel information in features. The experiments show that our proposed network gets superior performance than benchmark methods and indicates the generalization and effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feigin, V.L., et al.: Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. The Lancet Neurol. 20(10), 795–820 (2021)

    Article  Google Scholar 

  2. Hevia-Montiel, N., et al.: Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2102–2105. IEEE (2007)

    Google Scholar 

  3. Ozertem, U., Gruber, A., Erdogmus, D.: Automatic brain image segmentation for evaluation of experimental ischemic stroke using gradient vector flow and kernel annealing. In: 2007 International Joint Conference on Neural Networks, pp. 1397–1400. IEEE (2007)

    Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  6. Yang, H., et al.: CLCI-Net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30

    Chapter  Google Scholar 

  7. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  8. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Process. 16(5), 1243–1267 (2022)

    Article  Google Scholar 

  9. Johnson, L.A., Pearlman, J.D., Miller, C.A., Young, T.I., Thulborn, K.R.: MR quantification of cerebral ventricular volume using a semiautomated algorithm. Am. J. Neuroradiol. 14(6), 1373–1378 (1993)

    Google Scholar 

  10. Pujar, J.H., Gurjal, P.S., Kunnur, K.S., et al.: Medical image segmentation based on vigorous smoothing and edge detection ideology. Int. J. Electr. Comput. Eng. 4(8), 1143–1149 (2010)

    Google Scholar 

  11. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41(1), 1–10 (2011)

    Article  Google Scholar 

  12. Jayadevappa, D., Srinivas Kumar, S., Murty, D.S.: Medical image segmentation algorithms using deformable models: a review. IETE Tech. Rev. 28(3), 248–255 (2011)

    Google Scholar 

  13. Patil, D.D., Deore, S.G.: Medical image segmentation: a review. Int. J. Comput. Sci. Mobile Comput. 2(1), 22–27 (2013)

    Google Scholar 

  14. Hao, L.: Registration-based Segmentation of Medical Images. School of Computing National University of Singapore, Singapore (2006)

    Google Scholar 

  15. Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)

  16. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Ran, G., et al.: CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699–711 (2020)

    Google Scholar 

  19. Bao, Q., Mi, S., Gang, B., Yang, W., Chen, J., Liao, Q.: MDAN: mirror difference aware network for brain stroke lesion segmentation. IEEE J. Biomed. Health Inform. 26(4), 1628–1639 (2021)

    Article  Google Scholar 

  20. Yu, W., Lei, Y., Shan, H.: FAN-Net: fourier-based adaptive normalization for cross-domain stroke lesion segmentation. In: ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  21. He, X., Chen, K., Yang, M.: Semi-automatic segmentation of tissue regions in digital histopathological image. In: Gao, H., Wang, X. (eds.) CollaborateCom 2021. LNICST, vol. 406, pp. 678–696. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92635-9_39

    Chapter  Google Scholar 

  22. Lin, B., Deng, S., Yin, J., Zhang, J., Li, Y., Gao, H.: FocAnnot: patch-wise active learning for intensive cell image segmentation. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 355–371. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_21

    Chapter  Google Scholar 

  23. Abdmouleh, N., Echtioui, A., Kallel, F., Hamida, A.B.: Modified u-net architeture based ischemic stroke lesions segmentation. In: 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 361–365. IEEE (2022)

    Google Scholar 

  24. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Med. Image Anal. 87, 102792 (2023)

    Article  Google Scholar 

  25. Liu, L., Huang, C., Cai, C., Zhang, X., Hu, Q.: Multi-task learning improves the brain stoke lesion segmentation. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2385–2389. IEEE (2022)

    Google Scholar 

  26. Thiyagarajan, S.K., Murugan, K.: Performance analysis of ischemic stroke lesion segmentation in brain MR images using histogram based filter enhanced FCM. In: 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1343–1348. IEEE (2023)

    Google Scholar 

  27. Aboudi, F., Drissi, C., Kraiem, T.: Efficient u-net CNN with data augmentation for MRI ischemic stroke brain segmentation. In: 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 724–728. IEEE (2022)

    Google Scholar 

  28. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  29. Liu, S., Huang, D., et al.: Receptive field block net for accurate and fast object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 385–400 (2018)

    Google Scholar 

  30. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  31. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  32. Liew, S.-L., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5(1), 1–11 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by “Pioneer” and “Leading Goose” R &D Program of Zhejiang Province under No. 2022C03043, Natural Science Foundation of Zhejiang Province under No. LQ21F020015, and the Open Research Project Fund of Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources under Grants MED202202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Wan, J., Zhang, X. (2024). MD-TransUNet: TransUNet with Multi-attention and Dilated Convolution for Brain Stroke Lesion Segmentation. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics