Skip to main content

Dynamic Target User Selection Model for Market Promotion with Multiple Stakeholders

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

While recommendation platforms present merchants with a vast and transparent sales avenue, they have inadvertently favored dominant merchants, often sidelining small-sized businesses. Addressing this challenge, platforms are deploying multifaceted market promotion strategies both to help merchants identify potential users and to spotlight emerging items for users. A crucial aspect of these strategies is the efficient selection of target users. By channeling resources towards the most responsive users, there’s potential for a heightened return on marketing investments. In light of limited research in this domain, we put forth a tri-stakeholder considered user selection model with social networks (TriSUMS). This model recognizes the intertwined interests of three core stakeholders: merchants (items), platforms, and users. It harmonizes the objectives of these stakeholders through an integrated reward function and incorporates social networks to identify the prime target users for items of merchants adeptly. We validate TriSUMS using an exhaustive exposure user-item interaction dataset, assessed within a solid offline reinforcement learning framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell, M.C., Keller, K.L.: Brand familiarity and advertising repetition effects. J. Consum. Res. 30(2), 292–304 (2003)

    Article  Google Scholar 

  2. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198 (2016)

    Google Scholar 

  3. Fan, W., et al.: Graph neural networks for social recommendation. In: The World Wide Web Conference, pp. 417–426 (2019)

    Google Scholar 

  4. Fong, N., Zhang, Y., Luo, X., Wang, X.: Targeted promotions on an E-book platform: crowding out, heterogeneity, and opportunity costs. J. Mark. Res. 56(2), 310–323 (2019)

    Article  Google Scholar 

  5. Gao, C., et al.: KuaiRec: a fully-observed dataset for recommender systems. arXiv preprint arXiv:2202.10842 (2022)

  6. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  7. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  8. Javed, U., Shaukat, K., Hameed, I.A., Iqbal, F., Alam, T.M., Luo, S.: A review of content-based and context-based recommendation systems. Int. J. Emerg. Technol. Learn. (iJET) 16(3), 274–306 (2021)

    Article  Google Scholar 

  9. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2021)

    Article  Google Scholar 

  10. Lange, S., Gabel, T., Riedmiller, M.: Batch reinforcement learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-the-Art, vol. 12, pp. 45–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_2

  11. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

  12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  13. Liu-Thompkins, Y.: A decade of online advertising research: what we learned and what we need to know. J. Advert. 48(1), 1–13 (2019)

    Article  Google Scholar 

  14. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  15. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  16. Shen, J., Zhou, T., Chen, L.: Collaborative filtering-based recommendation system for big data. Int. J. Comput. Sci. Eng. 21(2), 219–225 (2020)

    Google Scholar 

  17. Suganeshwari, G., Syed Ibrahim, S.P.: A survey on collaborative filtering based recommendation system. In: Vijayakumar, V., Neelanarayanan, V. (eds.) Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC – 16’). SIST, vol. 49, pp. 503–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30348-2_42

    Chapter  Google Scholar 

  18. Tang, J., Gao, H., Liu, H.: mTrust: discerning multi-faceted trust in a connected world. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 93–102 (2012)

    Google Scholar 

  19. Wang, S., Gao, C., Gao, M., Yu, J., Wang, Z., Yin, H.: Who are the best adopters? User selection model for free trial item promotion. IEEE Trans. Big Data 9(2), 746–757 (2023). https://doi.org/10.1109/TBDATA.2022.3205334

    Article  Google Scholar 

  20. Wiering, M.A., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim. 12(3), 729 (2012)

    Google Scholar 

  21. Zhao, T., McAuley, J., King, I.: Leveraging social connections to improve personalized ranking for collaborative filtering. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 261–270 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, L., Wang, S., Gao, M., Gao, C. (2024). Dynamic Target User Selection Model for Market Promotion with Multiple Stakeholders. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 563. Springer, Cham. https://doi.org/10.1007/978-3-031-54531-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54531-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54530-6

  • Online ISBN: 978-3-031-54531-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics