Skip to main content

Efficiently Detecting Anomalies in IoT: A Novel Multi-Task Federated Learning Method

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

With the development of IoT technology, a significant amount of time series data is continuously generated, and anomaly detection of this data is crucial. However, time series data in IoT is dynamic and heterogeneous, and most centralized learning also suffers from security and privacy issues. To address these issues, we propose a multi-task anomaly detection approach based on federated learning (MTAD-FL) to address these problems. First, we propose a distributed framework based on Multi-Task Federated Learning (MT-FL), which aims to solve multiple tasks simultaneously while exploiting similarities and differences between tasks; second, to identify complex anomaly patterns and features in the IoT environment, we construct a Squeeze Excitation (SE) based and External Attention (EA) based Enhance Dual Network (SE-EA-EDN) feature extractor to monitor real-time data features from IoT systems efficiently; finally, we design a Local-Global Feature-based Parallel Knowledge Transfer (LGF-PKT) to parallelize the updating of weights of local and global features. To validate the effectiveness of our approach, we conducted comparative experiments on three publicly available datasets, SMD, SWaT, and SKAB, and MTAD-FL improved F1 by 11%, 67.8%, and 27.5%, respectively, over the other methods.

This research is supported by the National Natural Science Foundation under Grant No. 62376043 and Science and Technology Program of Sichuan Province under Grant No. 2020JDRC0067, No. 2023JDRC0087, and No. 24NSFTD0025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2019)

    Article  Google Scholar 

  2. Peng, C., Yunni, X., Shanchen, P., et al.: A probabilistic model for performance analysis of cloud infrastructures. Concurrency Comput. Pract. Experience 27(17), 4784–4796 (2015)

    Article  Google Scholar 

  3. Bonawitz, K., Eichner, H., Grieskamp, W., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)

    Google Scholar 

  4. McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, pp. 1273–1282 (2017)

    Google Scholar 

  5. Liu, Y., Garg, S., Nie, J., et al.: Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach[J]. IEEE Internet Things J. 8(8), 6348–6358 (2020)

    Article  Google Scholar 

  6. Ying, Z., Junjun, C., Di, W., et al.: Multi-task network anomaly detection using federated learning. In: Proceedings of the 10th International Symposium on Information and Communication Technology, pp. 273–279 (2019)

    Google Scholar 

  7. Hongyun, L., Peng, C., Zhiming, Z., Towards a robust meta-reinforcement learning-based scheduling framework for time critical tasks in cloud environments. In: IEEE 14th CLOUD, vol. 2021, pp. 637–647. IEEE (2021)

    Google Scholar 

  8. Crawshaw M. Multi-task learning with deep neural networks: a survey. arXiv preprint arXiv:2009.09796 (2020)

  9. Hongyun, L., Peng, C., Xue, O., et al.: Robustness challenges in reinforcement learning based time-critical cloud resource scheduling: a meta-learning based solution. Futur. Gener. Comput. Syst. 146, 18–33 (2023)

    Article  Google Scholar 

  10. Juan, C., Peng, C., Xianhua, N., et al.: Task offloading in hybrid-decision-based multi-cloud computing network: a cooperative multi-agent deep reinforcement learning. J. Cloud Comput. 11, 90 (2022)

    Article  Google Scholar 

  11. Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)

    Article  MathSciNet  Google Scholar 

  12. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  13. Daffertshofer, A., Lamoth, C.J.C., Meijer, O.G., et al.: PCA in studying coordination and variability: a tutorial. Clin. Biomech. 19(4), 415–428 (2004)

    Article  Google Scholar 

  14. Vallis, O., Hochenbaum, J., Kejariwal, A.: A novel technique for long-term anomaly detection in the cloud. In: 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14) (2014)

    Google Scholar 

  15. Haowen, X., Wenxiao, C., Nengwen, Z., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  16. Ruff, L., Vandermeulen, R., Goernitz, N., et al.: Deep one-class classification. In: International Conference on Machine Learning, PMLR, pp. 4393–4402 (2018)

    Google Scholar 

  17. Yujia, S., Ruyue, X., Peng, C., et al.: Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNN-based explainable approach. Futur. Gener. Comput. Syst. 145, 77–86 (2023)

    Article  Google Scholar 

  18. Peng, C., Hongyun, L., Ruyue, X., et al.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. 65(11), 2909–2925 (2022)

    Article  Google Scholar 

  19. Audibert, J., Michiardi, P., Guyard, F., et al.: Usad: unsupervised anomaly detection on multivariate time series. In: 26th ACM SIGKDD, pp. 3395–3404 (2020)

    Google Scholar 

  20. Ruyue, X., Peng, C., Zhiming, Z.: Causalrca: causal inference based precise fine-grained root cause localization for microservice applications. J. Syst. Softw. 203, 111724 (2023)

    Article  Google Scholar 

  21. Tuli, S., Casale, G., Jennings, N.R.: Tranad: deep transformer networks for anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284 (2022)

  22. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. AAAI-21 35(5), 4027–4035 (2021)

    Google Scholar 

  23. Chuxu, Z., Dongjin, S., Yuncong, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. AAAI-19. 33(01), 1409–1416 (2019)

    Google Scholar 

  24. Ruyue, X., Peng, C., Zhiming, Z.: Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework. J. Cloud Comput. 12(1), 1–16 (2023)

    Google Scholar 

  25. Sater, R.A., Hamza, A.B.: A federated learning approach to anomaly detection in smart buildings. ACM Trans. Internet Things 2(4), 1–23 (2021)

    Article  Google Scholar 

  26. Nguyen, T.D., Marchal, S., Miettinen, M., et al.: DÏoT: a federated self-learning anomaly detection system for IoT. In: 2019 39th ICDCS, pp. 756–767. IEEE (2019)

    Google Scholar 

  27. Suyi, L., Yong, C., Yang, L., et al.: Abnormal client behavior detection in federated learning. arXiv preprint arXiv:1910.09933 (2019)

  28. Yurochkin, M., Agarwal, M., Ghosh, S., et al.: Bayesian nonparametric federated learning of neural networks. In: International Conference on Machine Learning, pp. 7252–7261. PMLR (2019)

    Google Scholar 

  29. Yujing, C., Yue, N., Zheng, C., et al.: Federated multi-task hierarchical attention model for sensor analytics. arXiv preprint arXiv:1905.05142 (2019)

  30. Qu, Z., Lin, K., Li, Z., et al.: Federated learning’s blessing: Fedavg has linear speedup. In: ICLR 2021 (2021)

    Google Scholar 

  31. Xiang, L., Kaixuan, H., Wenhao, Y., et al.: On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189 (2019)

  32. Yang, H., He, H., Zhang, W., et al.: FedSteg: a federated transfer learning framework for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. 8(2), 1084–1094 (2020)

    Article  Google Scholar 

  33. Liu, Y., Kang, Y., Xing, C., et al.: A secure federated transfer learning framework. IEEE Intell. Syst. 35(4), 70–82 (2020)

    Article  Google Scholar 

  34. Seo, H., Park, J., Oh, S., et al.: 16 federated knowledge distillation. Mach. Learn. Wirel. Commun. 457 (2022)

    Google Scholar 

  35. He, C., Annavaram, M., Avestimehr, S.: Group knowledge transfer: Federated learning of large CNNs at the edge. Adv. Neural. Inf. Process. Syst. 33, 14068–14080 (2020)

    Google Scholar 

  36. Guodong, L., Ming, X., Ming, X., et al.: Multi-center federated learning: clients clustering for better personalization. World Wide Web 26(1), 481–500 (2023)

    Article  Google Scholar 

  37. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  38. Guo, M.H., Liu, Z.N., Mu, T.J., et al.: Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5436–5447 (2022)

    Google Scholar 

  39. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Yunni Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, J. et al. (2024). Efficiently Detecting Anomalies in IoT: A Novel Multi-Task Federated Learning Method. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 563. Springer, Cham. https://doi.org/10.1007/978-3-031-54531-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54531-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54530-6

  • Online ISBN: 978-3-031-54531-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics