Skip to main content

Application of Dynamic Graph CNN* and FICP for Detection and Research Archaeology Sites

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14486))

  • 75 Accesses

Abstract

The paper proposes a methodology for solving the task of accurate semantic classification of 3D data using a combination of 2D and 3D methods based on the YOLO detector and the modified DGCNN network. The methodology is tested on the example of the problem of classification of large-scale geospatial objects, such as digital relief models of archaeological sites. A method for accurate registration of objects (FCIP) in the class of affine transformations using geometric and color features was proposed. The results of computer modeling of the proposed methodology based on FICP+DGCNN*+YOLO were presented and discussed. The methodology has theoretical and applied significance not only for the decryption and research of archaeological sites, but also for many applications of digital information processing and robotics in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Comput. Vision Pattern Recogn. 1, 886–893 (2005)

    Google Scholar 

  2. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision. IEEE, Kerkyra (1999)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  5. Manzurv, T., Zeller, J., Serati, S.: Optical correlator based target detection, recognition, classification, and tracking. Appl. Opt. 51, 4976–4983 (2012)

    Article  Google Scholar 

  6. Ouerhani, Y., Jridi, M., Alfalou, A., Brosseau, C.: Optimized preprocessing input plane GPU implementation of an optical face recognition technique using a segmented phase only composite filter. Opt. Commun. 2013(289), 33–44 (2013)

    Article  Google Scholar 

  7. Kumar, B.V.-K.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Wang, P.S., Sun, C.Y., Liu, Y.: Adaptive O-CNN: a patch-based deep representation of 3D shapes. ACM Trans. Graphics 37(6), 1–11 (2018)

    Google Scholar 

  9. Brock, A., Lim, T., Ritchie, J.M.: Generative and discriminative voxel modeling with convolutional neural networks. http://arxiv.org/abs/1608.04236. Accessed 08 June 2023

  10. You, Y., Lou, Y., Qi, L., Tai, Y.W., Wang, W., Ma, L.: PRIN: pointwise rotation-invariant network. http://arxiv.org/abs/1811.09361. Accessed 08 June 2023

  11. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of International Conference on Computer Vision (ICCV). IEEE, Santiago (2015)

    Google Scholar 

  12. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: Proceedings of International Conference on Intelligent Robots and Systems (IROS). IEEE, Hamburg (2015)

    Google Scholar 

  13. Li, J., Chen, B.M., Lee, G.H.: SO-net: self-organizing network for point cloud analysis. In: Proceedings Computer Vision and Pattern Recognition. IEEE, Salt Lake City (2018)

    Google Scholar 

  14. Lambers, K., Verschoof-van der Vaart, W.V., Bourgeois, Q.P.G.: Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote Sens. 11(7), 794 (2019)

    Google Scholar 

  15. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu (2017)

    Google Scholar 

  16. Charles, R.Q., Li, Y., Hao, S., Leonidas, J. G.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of 31st Conference on Neural Information Processing Systems (NIPS). NeurIPS Media Kit, Long Beach (2017)

    Google Scholar 

  17. Zhang, Y., Rabbat, M.: A graph-CNN for 3D point cloud classification. In: Proceedings of International Conf. on Acoustics, Speech and Signal Processing. IEEE, Calgary (2018)

    Google Scholar 

  18. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics. 38(5), 146, 1–12 (2018)

    Google Scholar 

  19. Te, G., Hu, W., Guo, Z., Zheng, A., Guo, Z.: RGCNN: regularized graph CNN for point cloud segmentation MM. In: Proceedings of the 26th ACM International Conference on Multimedia. ACM Digital Library, Seoul (2018)

    Google Scholar 

  20. Horn, B.K.P.: Closed form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)

    Article  Google Scholar 

  21. Vokhmintcev, A.V., Sochenkov, I.V., Kuznetsov, V.V., Tikhonkikh, D.V.: Face recognition based on matching algorithm with recursive calculation of local oriented gradient histogram. Dokl. Math. 466(3), 453–459 (2016)

    Google Scholar 

  22. Vokhmintcev, A., Timchenko, M.: The new combined method of the generation of a 3D dense map of environment based on history of camera positions and the robot’s movements. Acta Polytech. Hung. 17(8), 95–108 (2020)

    Article  Google Scholar 

  23. Vokhmintcev, A.V., Melnikov, A.V., Pachganov, S.A.: Simultaneous localization and mapping method in 3D space based on the combined solution of the point-point variation problem ICP for an affine transformation. Inform. Appl. 14(1), 101–112 (2020)

    Google Scholar 

  24. YOLO by Ultralytics 2023. https://github.com/ultralytics/. Accessed 08 June 2023

  25. Zdanovich, G.B., Batanina, I.M., Levit, N.V., Batanin, S.A.: Step’-lesostep’. Kizil’skij rajon. Arheologicheskij atlas Chelyabinskoj oblasti 2003. https://search.rsl.ru/ru/record/01002755616?ysclid=lm3sa1zfkp696194850. Accessed 09 Jan 2023

Download references

Acknolwledgments

The work was supported by the Russian Science Foundation, project no. 23-11-20007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Vokhmintcev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vokhmintcev, A., Khristodulo, O., Melnikov, A., Romanov, M. (2024). Application of Dynamic Graph CNN* and FICP for Detection and Research Archaeology Sites. In: Ignatov, D.I., et al. Analysis of Images, Social Networks and Texts. AIST 2023. Lecture Notes in Computer Science, vol 14486. Springer, Cham. https://doi.org/10.1007/978-3-031-54534-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54534-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54533-7

  • Online ISBN: 978-3-031-54534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics