Skip to main content

Visualization-Driven Graph Sampling Strategy for Exploring Large-Scale Networks

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2023)

Abstract

Graph sampling is crucial for analyzing and understanding large-scale networks across various domains. While numerous approaches have been proposed in the existing literature, a comprehensive evaluation of these methods, with regards to both quality and execution time, is still needed. This paper addresses this gap by offering an exhaustive review of current graph sampling techniques and by introducing three distinct modifications to the Mino-centric graph sampling (MCGS) method. These modified algorithms, along with established methods, are rigorously evaluated through a quantitative analysis that encompasses two comparative iterations and multiple metrics. In addition to the quantitative analysis, we also conduct a qualitative user study, where survey participants assess the quality of the sampling from a visual perspective. Our findings indicate that one of our modified versions of the MCGS algorithm, namely Batch major CC MCGS, not only outperforms other methods in the context of visual evaluation but also significantly optimizes execution time in comparison with the original MCGS algorithm. This improvement equips researchers and practitioners with a powerful tool for exploring large-scale networks in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., Neville, J., Kompella, R.R.: Network sampling via edge-based node selection with graph induction. Technical report, Purdue University (2011)

    Google Scholar 

  2. Ahmed, N.K., Neville, J., Kompella, R.: Network sampling: from static to streaming graphs. ACM Trans. Knowl. Discov. Data 8(2), 1–56 (2013)

    Article  Google Scholar 

  3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows (1988)

    Google Scholar 

  4. Barabási, A.L.: Network science. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 371(1987), 20120375 (2013)

    Article  Google Scholar 

  5. Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and K-means in WSN. Int. J. Comput. Appl. 105(9), 17–24 (2014)

    Google Scholar 

  6. Cosmograph: Interactive network visualization (2023). https://cosmograph.app. Accessed 19 July 2023

  7. Hardiman, S.J., Katzir, L.: Estimating clustering coefficients and size of social networks via random walk. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 539–550 (2013)

    Google Scholar 

  8. Hu, J., et al.: Bc tree-based spectral sampling for big complex network visualization. Appl. Netw. Sci. 6(1), 60 (2021)

    Article  Google Scholar 

  9. Lee, S.H., Kim, P.J., Jeong, H.: Statistical properties of sampled networks. Phys. Rev. E 73(1), 016102 (2006)

    Article  Google Scholar 

  10. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370 (2010)

    Google Scholar 

  11. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187 (2005)

    Google Scholar 

  12. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2-es (2007)

    Google Scholar 

  13. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Data Sets. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  14. Leskovec, J., Sosič, R.: SNAP: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1–20 (2016)

    Article  Google Scholar 

  15. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 539–547 (2012)

    Google Scholar 

  16. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: The Cora dataset. https://paperswithcode.com/dataset/cora. Accessed 19 July 2023

  17. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001)

    Article  MathSciNet  Google Scholar 

  18. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636 (2003)

    Google Scholar 

  19. Rezvanian, A., Rahmati, M., Meybodi, M.R.: Sampling from complex networks using distributed learning automata. Phys. A 396, 224–234 (2014)

    Article  Google Scholar 

  20. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. 9(2), cnab014 (2021)

    Google Scholar 

  21. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1325–1334 (2020)

    Google Scholar 

  22. Stumpf, M.P.H., Wiuf, C.: Sampling properties of random graphs: the degree distribution. Phys. Rev. E 72(3), 036118 (2005)

    Article  MathSciNet  Google Scholar 

  23. Uehara, R.: The number of connected components in graphs and its applications. Technical report, Komazawa University (1999)

    Google Scholar 

  24. Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W.: Evaluation of graph sampling: a visualization perspective. IEEE Trans. Visual Comput. Graphics 23(1), 401–410 (2016)

    Article  Google Scholar 

  25. Zhao, Y., et al.: Mino-centric graph sampling (MCGS). GitHub repository (2020). https://github.com/csuvis/MCGS. Accessed 19 July 2023

  26. Zhao, Y., et al.: Preserving minority structures in graph sampling. IEEE Trans. Visual Comput. Graphics 27(2), 1698–1708 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the survey participants for their time and contribution to our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagik Khalafyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalafyan, G., Tirosyan, I., Yeghiazaryan, V. (2024). Visualization-Driven Graph Sampling Strategy for Exploring Large-Scale Networks. In: Ignatov, D.I., et al. Analysis of Images, Social Networks and Texts. AIST 2023. Lecture Notes in Computer Science, vol 14486. Springer, Cham. https://doi.org/10.1007/978-3-031-54534-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54534-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54533-7

  • Online ISBN: 978-3-031-54534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics