Skip to main content

LMD: Light-Weight Prediction Quality Estimation for Object Detection in Lidar Point Clouds

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2023)

Abstract

Object detection on Lidar point cloud data is a promising technology for autonomous driving and robotics which has seen a significant rise in performance and accuracy during recent years. Particularly uncertainty estimation is a crucial component for down-stream tasks and deep neural networks remain error-prone even for predictions with high confidence. Previously proposed methods for quantifying prediction uncertainty tend to alter the training scheme of the detector or rely on prediction sampling which results in vastly increased inference time. In order to address these two issues, we propose LidarMetaDetect (LMD), a light-weight post-processing scheme for prediction quality estimation. Our method can easily be added to any pre-trained Lidar object detector without altering anything about the base model and is purely based on post-processing, therefore, only leading to a negligible computational overhead. Our experiments show a significant increase of statistical reliability in separating true from false predictions. We propose and evaluate an additional application of our method leading to the detection of annotation errors. Explicit samples and a conservative count of annotation error proposals indicates the viability of our method for large-scale datasets like KITTI and nuScenes. On the widely-used nuScenes test dataset, 43 out of the top 100 proposals of our method indicate, in fact, erroneous annotations.

T. Riedlinger, M. Schubert, S. Penquitt and J.-M. Kezmann—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 11618–11628. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.01164. https://ieeexplore.ieee.org/document/9156412/

  2. Chen, H., Huang, Y., Tian, W., Gao, Z., Xiong, L.: MonoRUn: monocular 3D object detection by reconstruction and uncertainty propagation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 10374–10383. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.01024. https://ieeexplore.ieee.org/document/9578186/

  3. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. Technical report, Department of Computer Sciences and Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison (2006). https://minds.wisconsin.edu/bitstream/handle/1793/60482/TR1551.pdf

  4. Feng, D., Rosenbaum, L., Dietmayer, K.: Towards safe autonomous driving: capture uncertainty in the deep neural network for lidar 3D vehicle detection. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3266–3273 (2018). https://doi.org/10.1109/ITSC.2018.8569814. ISSN 2153-0017

  5. Feng, D., Rosenbaum, L., Timm, F., Dietmayer, K.: Leveraging heteroscedastic aleatoric uncertainties for robust real-time LiDAR 3D object detection. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1280–1287 (2019). https://doi.org/10.1109/IVS.2019.8814046. ISSN 2642-7214

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012). https://doi.org/10.1109/CVPR.2012.6248074. ISSN 1063-6919

  7. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks (2017)

    Google Scholar 

  8. Havasi, M., et al.: Training independent subnetworks for robust prediction (2021). http://arxiv.org/abs/2010.06610 [cs, stat]

  9. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 12689–12697. IEEE (2019). https://doi.org/10.1109/CVPR.2019.01298. https://ieeexplore.ieee.org/document/8954311/

  10. Lin, W.H., Hauptmann, A.: Meta-classification: combining multimodal classifiers. In: Zaïane, O.R., Simoff, S.J., Djeraba, C. (eds.) PAKDD 2002. LNCS, vol. 2797, pp. 217–231. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39666-6-14

    Chapter  Google Scholar 

  11. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 12669–12678. IEEE (2019). https://doi.org/10.1109/CVPR.2019.01296. https://ieeexplore.ieee.org/document/8953739/

  12. Meyer, G.P., Thakurdesai, N.: Learning an uncertainty-aware object detector for autonomous driving. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10521–10527 (2020). https://doi.org/10.1109/IROS45743.2020.9341623. ISSN 2153-0866

  13. MMDetection3D Contributors: OpenMMLab’s Next-generation Platform for General 3D Object Detection (2020). https://github.com/open-mmlab/mmdetection3d, original-date: 2020-07-08T03:39:45Z

  14. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  15. Pitropov, M., Huang, C., Abdelzad, V., Czarnecki, K., Waslander, S.: LiDAR-MIMO: efficient uncertainty estimation for LiDAR-based 3D object detection. In: 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 813–820 (2022). https://doi.org/10.1109/IV51971.2022.9827244

  16. Riedlinger, T., Rottmann, M., Schubert, M., Gottschalk, H.: Gradient-based quantification of epistemic uncertainty for deep object detectors. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, pp. 3910–3920. IEEE (2023). https://doi.org/10.1109/WACV56688.2023.00391. https://ieeexplore.ieee.org/document/10030773/

  17. Rottmann, M., et al.: Prediction error meta classification in semantic segmentation: detection via aggregated dispersion measures of softmax probabilities. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206659. ISSN 2161-4407

  18. Rottmann, M., Maag, K., Chan, R., Hüger, F., Schlicht, P., Gottschalk, H.: Detection of false positive and false negative samples in semantic segmentation. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1351–1356 (2020). https://doi.org/10.23919/DATE48585.2020.9116288. ISSN 1558-1101

  19. Schubert, M., Kahl, K., Rottmann, M.: MetaDetect: uncertainty quantification and prediction quality estimates for object detection. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–10 (2021). https://doi.org/10.1109/IJCNN52387.2021.9534289. ISSN 2161-4407

  20. Stanley, T.D., Jarrell, S.B.: Meta-regression analysis: a quantitative method of literature surveys. J. Econ. Surv. 19(3), 299–308 (2005). https://doi.org/10.1111/j.0950-0804.2005.00249.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0950-0804.2005.00249.x

  21. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  22. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 7652–7660. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00798. https://ieeexplore.ieee.org/document/8578896/

  23. Yang, Q., Chen, H., Chen, Z., Su, J.: Uncertainty estimation for monocular 3D object detectors in autonomous driving. In: 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), pp. 55–59 (2021). https://doi.org/10.1109/ICRAE53653.2021.9657820

  24. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 11779–11788. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.01161. https://ieeexplore.ieee.org/document/9578166/

Download references

Acknowledgement

We gratefully acknowledge financial support by the state Ministry of Economy, Innovation and Energy of Northrhine Westphalia (MWIDE) and the European Fund for Regional Development via the FIS.NRW project BIT, grant no. EFRE-0400216, as well as “Projekt UnrEAL”, grant no. 01IS22069, funded by the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Riedlinger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10949 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riedlinger, T. et al. (2024). LMD: Light-Weight Prediction Quality Estimation for Object Detection in Lidar Point Clouds. In: Köthe, U., Rother, C. (eds) Pattern Recognition. DAGM GCPR 2023. Lecture Notes in Computer Science, vol 14264. Springer, Cham. https://doi.org/10.1007/978-3-031-54605-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54605-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54604-4

  • Online ISBN: 978-3-031-54605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics