Abstract
In recent years, many studies have focused on correlating the profiles of real users across different social media. On the one hand, this provides a better overview of the user’s social behavior; on the other hand, it can be used to warn of possible abuse through identity theft or cyberbullying. We try to make the threat on the Web predictable for the individual user by creating digital twins. To do this, it is important to use different data sources and to merge overlapping data across platforms. In this paper, we show that YouTube is a suitable entry point into the online social network for making connections between platforms, tracking user activity across platforms, and finally merging the collected profile information into an overall picture, the digital twin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, A., Toshniwal, D.: SmPFT: social media based profile fusion technique for data enrichment. Comput. Netw. 158, 123–131 (2019). https://doi.org/10.1016/j.comnet.2019.04.015
Ahmad, W., Ali, R.: User identification across multiple online social networks using cross link attribute and network relationship. J. Interdiscip. Math. 23 (2020). https://doi.org/10.1080/09720502.2020.1721713
Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499
Bäumer, F.S., Grote, N., Kersting, J., Geierhos, M.: Privacy matters: detecting nocuous patient data exposure in online physician reviews. In: Damasevicius, R., Mikasyte, V. (eds.) Information and Software Technologies. ICIST 2017. CCIS, vol. 756, pp. 77–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_7
Bäumer, F.S., Kersting, J., Orlikowski, M., Geierhos, M.: Towards a multi-stage approach to detect privacy breaches in physician reviews. In: SEMANTICS Posters & Demos (2018)
Bennacer, N., Nana Jipmo, C., Penta, A., Quercini, G.: Matching user profiles across social networks. In: Jarke, M., et al. (eds.) Advanced Information Systems Engineering. CAiSE 2014. LNCS, vol. 8484, pp. 424–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_29
Bäumer, F.S., Denisov, S., Su Lee, Y., Geierhos, M.: Towards authority-dependent risk identification and analysis in online networks. In: Halimi, A., Ayday, E. (eds.) Proceedings of the IST-190 Research Symposium (RSY) on AI, ML and BD for Hybrid Military Operations (AI4HMO) (2021)
Cai, C., Li, L., Chen, W., Zeng, D.D.: Capturing deep dynamic information for mapping users across social networks. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019 (2019). https://doi.org/10.1109/ISI.2019.8823341
Data Portal: (October 2023). https://datareportal.com/reports/digital-2023-october-global-statshot. Accessed 18 Nov 2023
Denisov, S., Bäumer, F.S.: The only link you will ever need: how social media reference landing pages speed up profile matching. In: Lopata, A., Gudoniene, D., Butkiene, R. (eds.) Information and Software Technologies. ICIST 2022. CCIS, vol. 1665, pp. 136–147. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16302-9-10
Engels, G.: Der digitale Fußabdruck, Schatten oder Zwilling von Maschinen und Menschen. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO) 51(3), 363–370 (2020). https://doi.org/10.1007/s11612-020-00527-9
Feher, K.: Digital identity and the online self: footprint strategies – an exploratory and comparative research study. J. Inf. Sci. 47(2), 192–205 (2019). https://doi.org/10.1177/0165551519879702
Gan, D., Jenkins, L.R.: Social networking privacy-Who’s stalking you? Future Internet 7(1), 67–93 (2015)
Goga, O., Lei, H., Parthasarathi, S.H.K., Friedland, G., Sommer, R., Teixeira, R.: Exploiting innocuous activity for correlating users across sites. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 447–458. WWW ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2488388.2488428
Halimi, A., Ayday, E.: Efficient quantification of profile matching risk in social networks using belief propagation. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) Computer Security – ESORICS 2020. ESORICS 2020. LNCS, vol. 12308, pp. 110–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_6
Huber, M., Kowalski, S., Nohlberg, M., Tjoa, S.: Towards automating social engineering using social networking sites. In: 2009 International Conference on Computational Science and Engineering, vol. 3, pp. 117–124. IEEE (2009)
Kasbekar, P., Potika, K., Pollett, C.: Find me if you can: aligning users in different social networks. In: Proceedings - 2020 IEEE 6th International Conference on Big Data Computing Service and Applications, BigDataService 2020, pp. 46–53 (2020). https://doi.org/10.1109/BigDataService49289.2020.00015
Labuschagne, A., Eloff, M., Veerasamy, N.: The dark side of web 2.0. In: Hercheui, M.D., Whitehouse, D., McIver, W., Phahlamohlaka, J. (eds.) ICT Critical Infrastructures and Society. HCC 2012. IFIPAICT, LNCS, vol. 386, pp. 237–249. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33332-3_22
Li, Y., Ji, W., Gao, X., Deng, Y., Dong, W., Li, D.: Matching user accounts with spatio-temporal awareness across social networks. Inf. Sci. 570 (2021)
Li, Y., Peng, Y., Zhang, Z., Yin, H., Xu, Q.: Matching user accounts across social networks based on username and display name. World Wide Web 22(3), 1075–1097 (2019). https://doi.org/10.1007/s11280-018-0571-4
Mbarek, A., Jamoussi, S., BenHamadou, A.: Tuser3: a profile matching based algorithm across three heterogeneous social networks. In: Yang, X., Wang, C.D., Islam, M.S., Zhang, Z. (eds.) Advanced Data Mining and Applications. ADMA 2020. LNCS, vol.12447, pp. 191–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65390-3_16
Müngen, A.A., Gündoğan, E., Kaya, M.: Identifying multiple social network accounts belonging to the same users. Soc. Netw. Anal. Min. 11(1), 29 (2021)
Ryan, T., Mauch, G.: Getting in bed with Robin Sage. In: Black Hat Conference, pp. 1–8 (2010)
Seymour, J., Tully, P.: Weaponizing data science for social engineering: automated E2E spear phishing on Twitter. Black Hat USA 37, 1–39 (2016)
Sokhin, T., Butakov, N., Nasonov, D.: User profiles matching for different social networks based on faces identification. Hybrid Artif. Intell. Syst. 551–562 (2019). https://doi.org/10.1007/978-3-030-29859-3_47
Soltani, R., Abhari, A.: Identity matching in social media platforms. In: SPECTS, pp. 64–70. IEEE (2013)
Wang, L., Hu, K., Zhang, Y., Cao, S.: Factor graph model based user profile matching across social networks. IEEE Access 7, 152429–152442 (2019)
Xing, L., Deng, K., Wu, H., Xie, P., Gao, J.: Behavioral habits-based user identification across social networks. Symmetry 11, 1134 (2019)
Xing, L., Deng, K., Wu, H., Xie, P., Zhang, M., Wu, Q.: Exploiting two-level information entropy across social networks for user identification. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021)
Acknowledgements
This research is funded by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr. dtec.bw is funded by the European Union – NextGenerationEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schultenkämper, S., Bäumer, F.S., Bellgrau, B., Lee, Y.S., Geierhos, M. (2024). From Digital Tracks to Digital Twins: On the Path to Cross-Platform Profile Linking. In: Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2023 Workshops . EDOC 2023. Lecture Notes in Business Information Processing, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-54712-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-54712-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54711-9
Online ISBN: 978-3-031-54712-6
eBook Packages: Computer ScienceComputer Science (R0)