Skip to main content

From Digital Tracks to Digital Twins: On the Path to Cross-Platform Profile Linking

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing. EDOC 2023 Workshops (EDOC 2023)

Abstract

In recent years, many studies have focused on correlating the profiles of real users across different social media. On the one hand, this provides a better overview of the user’s social behavior; on the other hand, it can be used to warn of possible abuse through identity theft or cyberbullying. We try to make the threat on the Web predictable for the individual user by creating digital twins. To do this, it is important to use different data sources and to merge overlapping data across platforms. In this paper, we show that YouTube is a suitable entry point into the online social network for making connections between platforms, tracking user activity across platforms, and finally merging the collected profile information into an overall picture, the digital twin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Toshniwal, D.: SmPFT: social media based profile fusion technique for data enrichment. Comput. Netw. 158, 123–131 (2019). https://doi.org/10.1016/j.comnet.2019.04.015

    Article  Google Scholar 

  2. Ahmad, W., Ali, R.: User identification across multiple online social networks using cross link attribute and network relationship. J. Interdiscip. Math. 23 (2020). https://doi.org/10.1080/09720502.2020.1721713

  3. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499

    Article  Google Scholar 

  4. Bäumer, F.S., Grote, N., Kersting, J., Geierhos, M.: Privacy matters: detecting nocuous patient data exposure in online physician reviews. In: Damasevicius, R., Mikasyte, V. (eds.) Information and Software Technologies. ICIST 2017. CCIS, vol. 756, pp. 77–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_7

  5. Bäumer, F.S., Kersting, J., Orlikowski, M., Geierhos, M.: Towards a multi-stage approach to detect privacy breaches in physician reviews. In: SEMANTICS Posters & Demos (2018)

    Google Scholar 

  6. Bennacer, N., Nana Jipmo, C., Penta, A., Quercini, G.: Matching user profiles across social networks. In: Jarke, M., et al. (eds.) Advanced Information Systems Engineering. CAiSE 2014. LNCS, vol. 8484, pp. 424–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_29

  7. Bäumer, F.S., Denisov, S., Su Lee, Y., Geierhos, M.: Towards authority-dependent risk identification and analysis in online networks. In: Halimi, A., Ayday, E. (eds.) Proceedings of the IST-190 Research Symposium (RSY) on AI, ML and BD for Hybrid Military Operations (AI4HMO) (2021)

    Google Scholar 

  8. Cai, C., Li, L., Chen, W., Zeng, D.D.: Capturing deep dynamic information for mapping users across social networks. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019 (2019). https://doi.org/10.1109/ISI.2019.8823341

  9. Data Portal: (October 2023). https://datareportal.com/reports/digital-2023-october-global-statshot. Accessed 18 Nov 2023

  10. Denisov, S., Bäumer, F.S.: The only link you will ever need: how social media reference landing pages speed up profile matching. In: Lopata, A., Gudoniene, D., Butkiene, R. (eds.) Information and Software Technologies. ICIST 2022. CCIS, vol. 1665, pp. 136–147. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16302-9-10

  11. Engels, G.: Der digitale Fußabdruck, Schatten oder Zwilling von Maschinen und Menschen. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO) 51(3), 363–370 (2020). https://doi.org/10.1007/s11612-020-00527-9

  12. Feher, K.: Digital identity and the online self: footprint strategies – an exploratory and comparative research study. J. Inf. Sci. 47(2), 192–205 (2019). https://doi.org/10.1177/0165551519879702

    Article  Google Scholar 

  13. Gan, D., Jenkins, L.R.: Social networking privacy-Who’s stalking you? Future Internet 7(1), 67–93 (2015)

    Article  Google Scholar 

  14. Goga, O., Lei, H., Parthasarathi, S.H.K., Friedland, G., Sommer, R., Teixeira, R.: Exploiting innocuous activity for correlating users across sites. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 447–458. WWW ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2488388.2488428

  15. Halimi, A., Ayday, E.: Efficient quantification of profile matching risk in social networks using belief propagation. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) Computer Security – ESORICS 2020. ESORICS 2020. LNCS, vol. 12308, pp. 110–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_6

  16. Huber, M., Kowalski, S., Nohlberg, M., Tjoa, S.: Towards automating social engineering using social networking sites. In: 2009 International Conference on Computational Science and Engineering, vol. 3, pp. 117–124. IEEE (2009)

    Google Scholar 

  17. Kasbekar, P., Potika, K., Pollett, C.: Find me if you can: aligning users in different social networks. In: Proceedings - 2020 IEEE 6th International Conference on Big Data Computing Service and Applications, BigDataService 2020, pp. 46–53 (2020). https://doi.org/10.1109/BigDataService49289.2020.00015

  18. Labuschagne, A., Eloff, M., Veerasamy, N.: The dark side of web 2.0. In: Hercheui, M.D., Whitehouse, D., McIver, W., Phahlamohlaka, J. (eds.) ICT Critical Infrastructures and Society. HCC 2012. IFIPAICT, LNCS, vol. 386, pp. 237–249. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33332-3_22

  19. Li, Y., Ji, W., Gao, X., Deng, Y., Dong, W., Li, D.: Matching user accounts with spatio-temporal awareness across social networks. Inf. Sci. 570 (2021)

    Google Scholar 

  20. Li, Y., Peng, Y., Zhang, Z., Yin, H., Xu, Q.: Matching user accounts across social networks based on username and display name. World Wide Web 22(3), 1075–1097 (2019). https://doi.org/10.1007/s11280-018-0571-4

    Article  Google Scholar 

  21. Mbarek, A., Jamoussi, S., BenHamadou, A.: Tuser3: a profile matching based algorithm across three heterogeneous social networks. In: Yang, X., Wang, C.D., Islam, M.S., Zhang, Z. (eds.) Advanced Data Mining and Applications. ADMA 2020. LNCS, vol.12447, pp. 191–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65390-3_16

  22. Müngen, A.A., Gündoğan, E., Kaya, M.: Identifying multiple social network accounts belonging to the same users. Soc. Netw. Anal. Min. 11(1), 29 (2021)

    Article  Google Scholar 

  23. Ryan, T., Mauch, G.: Getting in bed with Robin Sage. In: Black Hat Conference, pp. 1–8 (2010)

    Google Scholar 

  24. Seymour, J., Tully, P.: Weaponizing data science for social engineering: automated E2E spear phishing on Twitter. Black Hat USA 37, 1–39 (2016)

    Google Scholar 

  25. Sokhin, T., Butakov, N., Nasonov, D.: User profiles matching for different social networks based on faces identification. Hybrid Artif. Intell. Syst. 551–562 (2019). https://doi.org/10.1007/978-3-030-29859-3_47

  26. Soltani, R., Abhari, A.: Identity matching in social media platforms. In: SPECTS, pp. 64–70. IEEE (2013)

    Google Scholar 

  27. Wang, L., Hu, K., Zhang, Y., Cao, S.: Factor graph model based user profile matching across social networks. IEEE Access 7, 152429–152442 (2019)

    Article  Google Scholar 

  28. Xing, L., Deng, K., Wu, H., Xie, P., Gao, J.: Behavioral habits-based user identification across social networks. Symmetry 11, 1134 (2019)

    Google Scholar 

  29. Xing, L., Deng, K., Wu, H., Xie, P., Zhang, M., Wu, Q.: Exploiting two-level information entropy across social networks for user identification. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021)

    Google Scholar 

Download references

Acknowledgements

This research is funded by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr. dtec.bw is funded by the European Union – NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Schultenkämper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultenkämper, S., Bäumer, F.S., Bellgrau, B., Lee, Y.S., Geierhos, M. (2024). From Digital Tracks to Digital Twins: On the Path to Cross-Platform Profile Linking. In: Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2023 Workshops . EDOC 2023. Lecture Notes in Business Information Processing, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-54712-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54712-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54711-9

  • Online ISBN: 978-3-031-54712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics