Abstract
The concept of Digital Twin (DT) has gained popularity as a digital representation of physical entities that interact with their real-world counterparts in (near) real-time through sensors and actuators. DTs can be applied across different sectors, offering benefits like simulation, remote monitoring, and predictive maintenance, which are relevant capabilities of smart systems. However, achieving the full potential of DTs requires addressing interoperability challenges posed by the complex networks of devices and systems that play different roles in DTs. This paper presents a research agenda aimed at enhancing DT interoperability grounded in four perspectives, which reflect knowledge fields in computer/information science, i.e., architecture of distributed systems, model-based system engineering, ontology-driven conceptual modeling, and linked data with semantic web. This paper highlights how leveraging on existing standards, such as modelling languages and ontologies, is important for improved DT interoperability. This becomes increasingly relevant for driving research directions related to ongoing initiatives such as the International Data Spaces and the Digital Product Passport.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
References
Pessoa, M.V.P., Pires, L.F., Moreira, J.L.R., Wu, C.: Model-based digital threads for socio-technical systems. In: Marques, G., Gonzalez-Briones, A., Molina Lopez, J.M. (eds.) Machine Learning for Smart Environments/Cities. Intelligent Systems Reference Library, vol. 121, pp. 27–52. Springer, Cham (2022). ISBN 978-3-030-97516-6. https://doi.org/10.1007/978-3-030-97516-6_2
Naderi, H., Shojaei, A.: Digital twinning of civil infrastructures: current state of model architectures, interoperability solutions, and future prospects. Autom. Constr. 149 (2023). ISSN 0926–5805. https://doi.org/10.1016/j.autcon.2023.104785
Böttjer, T., et al.: A review of unit level digital twin applications in the manufacturing industry. CIRP J. Manuf. Sci. Technol. 45, 162–189 (2023). ISSN 1755–5817. https://doi.org/10.1016/j.cirpj.2023.06.011
Jeddoub, I., Nys, G.A., Hajji, R., Billen, R.: Digital twins for cities: analyzing the gap between concepts and current implementations with a specific focus on data integration. Int. J. Appl. Earth Obs. Geoinf. 122 (2023). ISSN 1569–8432. https://doi.org/10.1016/j.jag.2023.103440
Walden, J., Steinbrecher, A., Marinkovic, M.: Digital product passports as enabler of the circular economy. Chem. Ing. Tech. 93(11), 1717–1727 (2021). https://doi.org/10.1002/cite.202100121
Firdausy, D.R., de Alencar Silva, P., van Sinderen, M., Iacob, M.E.: A data connector store for international data spaces. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds.) Cooperative Information Systems. CoopIS 2022. LNCS, vol. 13591, pp. 242–258. Springer, Cham (2022). ISBN 978-3-031-17834-4. https://doi.org/10.1007/978-3-031-17834-4_14
Wieringa, R.J.: The Design Cycle, pp. 27–34. Springer, Berlin, Heidelberg (2014). ISBN 978-3-662-43839-8. https://doi.org/10.1007/978-3-662-43839-8_3
Moreira, J., Pires, L.F., Van Sinderen, M., Daniele, L., Girod-Genet, M.: Saref4health: towards IoT standard-based ontology-driven cardiac e-health systems. Appl. Ontol. 15(3), 385–410 (2020). ISSN 1570–5838. https://doi.org/10.3233/AO-200232
Tuhaise, V.V., Tah, J.H.M., Abanda, F.H.: Technologies for digital twin applications in construction. Autom. Constr. 152, 104931 (2023). ISSN 0926–5805. https://doi.org/10.1016/j.autcon.2023.104931
Gaebel, J., Keller, J., Schneider, D., Lindenmeyer, A., Neumuth, T., Franke, S.: The digital twin: modular model-based approach to personalized medicine. Curr. Dir. Biomed. Eng. 7(2), 223–226 (2021). https://doi.org/10.1515/cdbme-2021-2057
Richardson, C.: Benefits and drawbacks of the microservice architecture. Manning Publications (2017). ISBN 978-1617294549
Brambilla, M., Cabot, J., Wimmer, M.: MDSE Principles. In: Model-Driven Software Engineering in Practice. SLSE. Springer, Cham (2017). ISBN 978-3-031-02549-5. https://doi.org/10.1007/978-3-031-02549-5_2
Guizzardi, G., Botti Benevides, A., Fonseca, C.M., Porello, D., Almeida, J.P.A., Prince Sales, T.: UFO: unified foundational ontology. Appl. Ontol. 17(1), 167–210 (2022). https://doi.org/10.3233/AO-210256
Pfeiffer, J., Lehner, D., Wortmann, A., Wimmer, M.: Modeling capabilities of digital twin platforms - old wine in new bottles? J. Object Technol. 21(3), 3:1–14 (2022). ISSN 1660–1769. https://doi.org/10.5381/jot.2022.21.3.a10. The 18th European Conference on Modelling Foundations and Applications (ECMFA 2022)
Guizzardi, G.: Ontology, ontologies and the I of FAIR. Data Intell. 2(1–2), 181–191 (2020). ISSN 2641–435X. https://doi.org/10.1162/dint_a_00040
Benhamed, O.M., et al.: The FAIR data point: interfaces and tooling. Data Intell. 5(1), 184–201 (2023). ISSN 2641–435X. https://doi.org/10.1162/dint_a_00161
Sales, T.P., et al.: A fair catalog of ontology-driven conceptual models. Data Knowl. Eng. (2023). ISSN 0169–023X. https://doi.org/10.1016/j.datak.2023.102210
Moreira, J., Cordeiro, K., Campos, M.L., Borges, M.: Ontowarehousing – multidimensional design supported by a foundational ontology: a temporal perspective. In: Bellatreche, L., Mohania, M.K. (eds.) Data Warehousing and Knowledge Discovery. DaWaK 2014. LNCS, vol. 8646, pp. 35–44. Springer, Cham (2014). ISBN 978-3-319-10160-6. https://doi.org/10.1007/978-3-319-10160-6_4
Nakagawa, P.I., Pires, L.F., Moreira, J.L.R., Bonino da Silva Santos, L.O., Bukhsh, F.: Semantic description of explainable machine learning workflows for improving trust. Appl. Sci. 11(22) (2021). ISSN 2076–3417. https://doi.org/10.3390/app112210804. https://www.mdpi.com/2076-3417/11/22/10804
Yadav, G., Kumar, A., Luthra, S., Garza-Reyes, J.A., Kumar, V., Batista, L.: A framework to achieve sustainability in manufacturing organisations of developing economies using industry 4.0 technologies’ enablers. Comput. Ind. (2020). ISSN 0166–3615. https://doi.org/10.1016/j.compind.2020.103280
Barcelos, P.P.F., et al.: Inferring ontological categories of owl classes using foundational rules. In: 13th International Conference on Formal Ontology in Information Systems (FOIS 2023) (2023)
Guizzardi, G., Guarino, N.: Semantics, ontology and explanation. CoRR, abs/2304.11124 (2023). https://doi.org/10.48550/arXiv.2304.11124
Romanenko, E., Calvanese, D., Guizzardi, G.: Towards pragmatic explanations for domain ontologies. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra, F.J. (eds.) Knowledge Engineering and Knowledge Management. EKAW 2022. LNCS, vol. 13514, pp. 201–208. Springer, Cham (2022). ISBN 978-3-031-17105-5. https://doi.org/10.1007/978-3-031-17105-5_15
Almeida, J.P.A., Costa, P.D., Guizzardi, G.: Towards an ontology of scenes and situations. In: Rogova, G.L., Lebiere, C., Gundersen, O.E., Salfinger, A., Baclawski, K. (eds.), IEEE Conference on Cognitive and Computational Aspects of Situation Management, CogSIMA 2018, Boston, MA, USA, 11–14 June 2018, pp. 29–35. IEEE (2018). https://doi.org/10.1109/COGSIMA.2018.8423994
de Souza, P.L., et al.: Ontology-driven IoT system for monitoring hypertension. In: Proceedings of the 25th International Conference on Enterprise Information Systems - Volume 1: ICEIS, pp. 757–767. INSTICC, SciTePress (2023). ISBN 978-989-758-648-4. https://doi.org/10.5220/0011989100003467
Trojahn, C., Vieira, R., Schmidt, D., Pease, A., Guizzardi, G.: Foundational ontologies meet ontology matching: a survey. Semant. Web 13(4), 685–704 (2022). https://doi.org/10.3233/SW-210447
Azevedo, C.L., Iacob, M.E., Almeida, J.P.A., van Sinderen, M., Pires, L.F., Guizzardi, G.: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for archimate. Inf. Syst. 54, 235–262 (2015). https://doi.org/10.1016/j.is.2015.04.008
Amaral, G., Sales, T.P., Guizzardi, G., Almeida, J.P.A., Porello, D.: Modeling trust in enterprise architecture: a pattern language for ArchiMate. In: Grabis, J., Bork, D. (eds.) The Practice of Enterprise Modeling. PoEM 2020. LNBIP, vol. 400, pp. 73–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_6
Oliveira, I., Sales, T.P., Almeida, J.P.A., Baratella, R., Fumagalli, M., Guizzardi, G.: Ontological analysis and redesign of security modeling in ArchiMate. In: Barn, B.S., Sandkuhl, K. (eds.) The Practice of Enterprise Modeling. PoEM 2022. LNBIP, vol. 456, pp. 82–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21488-2_6
Nardi, J.C., et al.: Service commitments and capabilities across the archimate architectural layers. In: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 1–10 (2016). https://doi.org/10.1109/EDOCW.2016.7584386
Griffo, C., Almeida, J.P.A., Guizzardi, G., Nardi, J.C.: Service contract modeling in enterprise architecture: an ontology-based approach. Inf. Syst. 101, 101454 (2021). https://doi.org/10.1016/j.is.2019.101454
Saraiva, L., Silva, P., Castro, A., Ribeiro, C., Moreira, J.: Ontology of product provenance for value networks. In: Nurcan, S., Opdahl, A.L., Mouratidis, H., Tsohou, A. (eds.) Research Challenges in Information Science: Information Science and the Connected World. RCIS 2023. LNBIP, vol. 476, pp. 577–584. Springer, Cham (2023). ISBN 978-3-031-33080-3. https://doi.org/10.1007/978-3-031-33080-3_40
Celebi, R., et al.: Towards FAIR protocols and workflows: the openpredict use case. PeerJ Comput. Sci. 6, e281 (2020). https://doi.org/10.7717/peerj-cs.281
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rebelo Moreira, J.L. (2024). The Role of Interoperability for Digital Twins. In: Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2023 Workshops . EDOC 2023. Lecture Notes in Business Information Processing, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-54712-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-54712-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54711-9
Online ISBN: 978-3-031-54712-6
eBook Packages: Computer ScienceComputer Science (R0)