Skip to main content

Exploring Data Augmentation Strategies for Diagonal Earlobe Crease Detection

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2023)

Abstract

Diagonal earlobe crease (DELC), also known as Frank’s sign, is a diagonal crease, line, or deep fold that appears on the earlobe and has been hypothesized to be a potential predictor of heart attacks. The presence of DELC has been linked to cardiovascular disease, atherosclerosis, and increased risk of coronary artery disease. Some researchers believe that DELC may be an indicator of an impaired blood supply to the earlobe, which could reflect similar issues in the heart’s blood supply. However, more research is needed to determine whether DELC is a reliable marker for identifying individuals at risk of heart attacks or other cardiovascular problems. To this end, the authors have released the first DELC dataset to the public and investigated the performance of numerous state-of-the-art backbones on annotated photos. The experiments demonstrated that combining pre-trained encoders with a customized classifier achieved 97.7% accuracy, with MobileNet being the most promising encoder in terms of the performance-to-size trade-off.

We want to acknowledge Dr. Cecilia Meiler-Rodríguez for her creative suggestions and inspiring ideas. This work is partially funded by the ULPGC under project ULPGC2018-08, by the Spanish Ministry of Science and Innovation under project PID2021-122402OB-C22, and by the ACIISI-Gobierno de Canarias and European FEDER funds under projects ProID2020010024, ProID2021010012, ULPGC Facilities Net, and Grant EIS 2021 04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/heartexlabs/labelImg.

References

  1. Almonacid-Uribe., S., Santana., O.J., Hernández-Sosa., D., Freire-Obregón., D.: Deep learning for diagonal earlobe crease detection. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods, pp. 74–81 (2023)

    Google Scholar 

  2. Alshazly, H., Linse, C., Barth, E., Martinetz, T.: Handcrafted versus CNN features for ear recognition. Symmetry 11(12), 1493 (2019)

    Google Scholar 

  3. Ardila, D., Kiraly, A., Bharadwaj, S., Choi, B., Shetty, S.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019)

    Article  Google Scholar 

  4. Boudoulas, K., Triposkiadis, F., Geleris, P., Boudoulas, H.: Coronary atherosclerosis: pathophysiologic basis for diagnosis and management. Prog. Cardiovasc. Dis. 58, 676–692 (2016)

    Article  Google Scholar 

  5. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Google Scholar 

  6. CDC: About Multiple Cause of Death, 1999–2020 (2022)

    Google Scholar 

  7. Cha, D., Pae, C., Seong, S.B., Choi, J.Y., Park, H.J.: Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine 45, 606–614 (2019)

    Article  Google Scholar 

  8. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  10. Emeršič, Ž., Štruc, V., Peer, P.: Ear recognition: more than a survey. Neurocomputing 255, 26–39 (2017). Bioinspired Intelligence for machine learning

    Google Scholar 

  11. Frank, S.: Aural sign of coronary-artery disease. IEEE Trans. Med. Imaging 289(6), 327–328 (1973)

    Google Scholar 

  12. Freire-Obregón, D., Marsico, M.D., Barra, P., Lorenzo-Navarro, J., Castrillón-Santana, M.: Zero-shot ear cross-dataset transfer for person recognition on mobile devices. Pattern Recogn. Lett. 166, 143–150 (2023)

    Article  Google Scholar 

  13. Freire-Obregón, D., Rosales-Santana, K., Marín-Reyes, P.A., Penate-Sanchez, A., Lorenzo-Navarro, J., Castrillón-Santana, M.: Improving user verification in human-robot interaction from audio or image inputs through sample quality assessment. Pattern Recogn. Lett. 149, 179–184 (2021)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hirano, H., Katsumata, R., Futagawa, M., Higashi, Y.: Towards view-invariant expression analysis using analytic shape manifolds. In: 2016 IEEE Engineering in Medicine and Biology Society, pp. 2374–2377 (2016)

    Google Scholar 

  16. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  17. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016)

    Google Scholar 

  18. Isgum, I., Prokop, M., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans. Med. Imaging 31(12), 2322–2334 (2012)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 2015 International Conference on Learning Representations (2015)

    Google Scholar 

  20. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  21. Mallinson, T., Brooke, D.: Limited diagnostic potential of diagonal earlobe crease. Ann. Emerg. Med. 70(4), 602–603 (2017)

    Article  Google Scholar 

  22. Pasternac, A., Sami, M.: Predictive value of the ear-crease sign in coronary artery disease. Can. Med. Assoc. J. 126(6), 645–649 (1982)

    Google Scholar 

  23. Rodríguez-López, C., Garlito-Díaz, H., Madroñero-Mariscal, R., López-de Sá, E.: Earlobe crease shapes and cardiovascular events. Am. J. Cardiol. 116(2), 286–293 (2015)

    Article  Google Scholar 

  24. Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., Lucia, A.: Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Medi. 4(13), 1–12 (2016)

    Google Scholar 

  25. Santana, O.J., Freire-Obregón, D., Hernández-Sosa, D., Lorenzo-Navarro, J., Sánchez-Nielsen, E., Castrillón-Santana, M.: Facial expression analysis in a wild sporting environment. In: Multimedia Tools and Applications (2022)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 2015 International Conference on Learning Representations (2015)

    Google Scholar 

  27. Steinberg, A., Rosner, F.: Encyclopedia of Jewish Medical Ethics. Feldheim Publishers, Spring Valley (2003)

    Google Scholar 

  28. Stoyanov, G., Dzhenkov, D., Petkova, L., Sapundzhiev, N., Georgiev, S.: The histological basis of Frank’s sign. Head Neck Pathol. 15(2), 402–407 (2021)

    Article  Google Scholar 

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  30. Tsao, C., Aday, A., Almarzooq, Z., Beaton, A., Bittencourt, M., Boehme, A.: Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation 145(8), e153–e639 (2022)

    Article  Google Scholar 

  31. Wang, Y., et al.: Deep learning in automated region proposal and diagnosis of chronic otitis media based on computed tomography. Ear Hear. 41(3), 669–677 (2020)

    Google Scholar 

  32. Wieckowski, K.: Diagonal earlobe crease (Frank’s Sign) for diagnosis of coronary artery disease: a systematic review of diagnostic test accuracy studies. J. Clin. Med. 10(13), 2799 (2021)

    Google Scholar 

  33. Wolterink, J.M., Leiner, T., Takx, R.A.P., Viergever, M.A., Isgum, I.: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans. Med. Imaging 34(9), 1867–1878 (2015)

    Article  Google Scholar 

  34. Yamak, D., Panse, P., Pavlicek, W., Boltz, T., Akay, M.: Non-calcified coronary atherosclerotic plaque characterization by dual energy computed tomography. IEEE J. Biomed. Health Inform. 18(3), 939–945 (2014)

    Article  Google Scholar 

  35. Zeleznik, R., et al.: Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat. Commun. 12(1), 715 (2021)

    Article  Google Scholar 

  36. Zeng, X., et al.: Efficient and accurate identification of ear diseases using an ensemble deep learning model. Sci. Rep. 11(1), 10839 (2021)

    Google Scholar 

  37. Zhao, F., Wu, B., Chen, F., He, X., Liang, J.: An automatic multi-class coronary atherosclerosis plaque detection and classification framework. Med. Biol. Eng. Comput. 57(1), 245–257 (2019)

    Article  Google Scholar 

  38. Zreik, M., van Hamersvelt, R.W., Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans. Med. Imaging 38(7), 1588–1598 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Freire-Obregón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almonacid-Uribe, S., Santana, O.J., Hernández-Sosa, D., Freire-Obregón, D. (2024). Exploring Data Augmentation Strategies for Diagonal Earlobe Crease Detection. In: De Marsico, M., Di Baja, G.S., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2023. Lecture Notes in Computer Science, vol 14547. Springer, Cham. https://doi.org/10.1007/978-3-031-54726-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54726-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54725-6

  • Online ISBN: 978-3-031-54726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics