Skip to main content

CryptoZoo: A Viewer for Reduction Proofs

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14583))

Included in the following conference series:

  • 475 Accesses

Abstract

Cryptographers rely on visualization to effectively communicate cryptographic constructions with one another. Visual frameworks such as constructive cryptography (TOSCA 2011), the joy of cryptography (online book) and state-separating proofs (SSPs, Asiacrypt 2018) are useful to communicate not only the construction, but also their proof visually by representing a cryptographic system as graphs.

One SSP core feature is the re-use of code, e.g., a package of code might be used in a game and be part of the description of a reduction as well. Thus, in a proof, the linear structure of a paper either requires the reader to turn pages to find definitions or writers to re-state them, thereby interrupting the visual flow of the game hops that are defined by a sequence of graphs.

We present an interactive proof viewer for state-separating proofs (SSPs) which addresses the limitations and perform three case studies: The equivalence between simulation-based and game-based notions for symmetric encryption, the security proof of the Goldreich-Goldwasser-Micali construction of a pseudorandom function from a pseudorandom generator, and Brzuska’s and Oechsner’s SSP formalization of the proof for Yao’s garbling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://proofviewer.cryptozoo.eu.

  2. 2.

    Length-hiding encryption can mitigate this issue to some extent, but due to information-theory and correctness of decryption, the length of the ciphertext is always an upper bound on the length of the message.

  3. 3.

    https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html.

  4. 4.

    https://proofviewer.cryptozoo.eu/ggm-landing.html.

  5. 5.

    https://proofviewer.cryptozoo.eu/yao-landing.html.

References

  1. Abate, C., et al.: SSProve: a foundational framework for modular cryptographic proofs in coq. In: Küsters, R., Naumann, D., (eds.) CSF 2021 Computer Security Foundations Symposium, pp. 1–15. IEEE Computer Society Press (2021)

    Google Scholar 

  2. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. Part I, volume 8269 of LNCS, pp. 296–315. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized Key Management for Large Dynamic Groups A protocol proposal for Messaging Layer Security (MLS). Research report, Inria Paris (2018)

    Google Scholar 

  4. Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the MLS key derivation. In: 2022 IEEE Symposium on Security and Privacy, pp. 2535–2553. IEEE Computer Society Press (2022)

    Google Scholar 

  5. Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok, K., Kohlweiss, M.: Key-schedule security for the TLS 1.3 standard. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part I, volume 13791 of LNCS, pp. 621–650. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22963-3_21

    Chapter  Google Scholar 

  6. Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State separation for code-based game-playing proofs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. Part III, volume 11274 of LNCS, pp. 222–249. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03332-3_9

    Chapter  Google Scholar 

  7. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10082-1_6

    Chapter  Google Scholar 

  8. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_5

    Chapter  Google Scholar 

  9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)

    Google Scholar 

  10. Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (2023)

    Google Scholar 

  11. Brzuska, C., Oechsner, S.: A state-separating proof for yao’s garbling scheme. In: 2023 IEEE 36th Computer Security Foundations Symposium (CSF) (CSF), pp. 127–142. IEEE Computer Society, Los Alamitos, CA, USA (2023)

    Google Scholar 

  12. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  13. Bülow, N.: Proof visualization for the lean 4 theorem prover (2022)

    Google Scholar 

  14. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

    Google Scholar 

  15. Cattaneo, G., De Santis, A., Petrillo, U.F.: Visualization of cryptographic protocols with grace. J. Vis. Lang. Comput. 19(2), 258–290 (2008)

    Article  Google Scholar 

  16. Carmer, B., Rosulek, M.: Vamonos: embeddable visualizations of advanced algorithms. In: 2015 IEEE Frontiers in Education Conference (FIE), pp. 1–8 (2015)

    Google Scholar 

  17. Davis, H., Diemert, D., Günther, F., Jager, T.: On the concrete security of TLS 1.3 PSK mode. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 876–906. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3_30

  18. Degabriele, J.P., Fischlin, M.: Simulatable Channels: extended security that is universally composable and easier to prove. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 519–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_19

    Chapter  Google Scholar 

  19. Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security of ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E., (eds.) ACM CCS 2021, pp. 1981–2003. ACM Press (2021)

    Google Scholar 

  20. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.: A thorough treatment of highly-efficient NTRU instantiations. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. Part I, volume 13940 of LNCS, pp. 65–94. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-31368-4_3

    Chapter  Google Scholar 

  21. Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratcheted key exchange. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part III, volume 13793 of LNCS, pp. 119–150. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22969-5_5

    Chapter  Google Scholar 

  22. Dupressoir, F., Kohbrok, K., Oechsner, S.: Bringing state-separating proofs to EasyCrypt a security proof for cryptobox. In: CSF 2022 Computer Security Foundations Symposium, pp. 227–242. IEEE Computer Society Press (2022)

    Google Scholar 

  23. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: the lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

    Chapter  Google Scholar 

  24. Egger, C.: On abstraction and modularization in protocol analysis, Doctoral thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2023)

    Google Scholar 

  25. Elmqvist, N.: Protoviz: a simple security protocol visualization, Tech. Rep., University of Gothenburg (2004)

    Google Scholar 

  26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  27. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge, UK (2004)

    Book  Google Scholar 

  28. Kohbrok, K.: State-separating proofs and their applications, Doctoral thesis, Aalto University School of Science (2023)

    Google Scholar 

  29. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3

    Chapter  Google Scholar 

  30. Pit-Claudel, C.: Untangling mechanized proofs. In: Lämmel, R., Tratt, L., de Lara, J., (eds.) Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2020, Virtual Event, USA, November 16–17, 2020, pp. 155–174. ACM (2020)

    Google Scholar 

  31. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018)

    Google Scholar 

  32. Rosulek, M.: The joy of cryptography. Oregon State University (2021)

    Google Scholar 

  33. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_1

    Chapter  Google Scholar 

  34. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004). https://eprint.iacr.org/2004/332

  35. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of diffie-hellman protocols and advanced security properties. In: Zdancewic, S., Cortier, V., (eds.) CSF 2012 Computer Security Foundations Symposium, pp. 78–94. IEEE Computer Society Press (2012)

    Google Scholar 

  36. Tews, H.: Prooftrees (2023)

    Google Scholar 

  37. The Coq Development Team: The coq proof assistant, version 8.7.0 (2017)

    Google Scholar 

  38. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

    Google Scholar 

Download references

Acknowledgment

This project was supported by the Research Council of Finland and the European Commission under the Horizon2020 research and innovation programme, Marie Sklodowska-Curie grant agreement No 101034255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirthivaasan Puniamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzuska, C., Egger, C., Puniamurthy, K. (2024). CryptoZoo: A Viewer for Reduction Proofs. In: Pöpper, C., Batina, L. (eds) Applied Cryptography and Network Security. ACNS 2024. Lecture Notes in Computer Science, vol 14583. Springer, Cham. https://doi.org/10.1007/978-3-031-54770-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54770-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54769-0

  • Online ISBN: 978-3-031-54770-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics