Abstract
Fuzzy extractors (Dodis et al. EUROCRYPT’04) allow to generate close to uniform randomness using correlated distributions outputting samples that are close over some metric space. The latter requires to produce a helper value (along with the extracted key) that can be used to recover the key using close samples. Robust fuzzy extractors (Dodis et al., CRYPTO’06) further protect the helper string from arbitrary active manipulations, by requiring that the reconstructed key using a modified helper string cannot yield a different extractor output.
It is well known that statistical robustness inherently requires large min-entropy (in fact, \(m>n/2\) where n is the bit length of the samples) from the underlying correlated distributions, even assuming trusted setup. Motivated by this limitation, we start the investigation of security properties weaker than robustness, but that can be achieved in the plain model assuming only minimal min-entropy (in fact, \(m=\omega (\log n)\)), while still being useful for applications. We identify one such property and put forward the notion of non-malleable fuzzy extractors. Intuitively, non-malleability relaxes the robustness property by allowing the reconstructed key using a modified helper string to be different from the original extractor output, as long as it is a completely unrelated value.
We give a black-box construction of non-malleable fuzzy extractors in the plain model for min-entropy \(m=\omega (\log n)\), against interesting families of manipulations including split-state tampering, small-depth circuits tampering, and space-bounded tampering (in the information-theoretic setting), as well as tampering via partial functions (assuming one-way functions). We leave it as an open problem to establish whether non-malleability is possible for arbitrary manipulations of the helper string. Finally, we show an application of non-malleable fuzzy extractors to protect stateless cryptographic primitives whose secret keys are derived using fuzzy correlated distributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The latter means that the construction requires a trusted third party to sample a public string, according to some distribution.
- 2.
The actual definition is slightly more complex, as one needs to account for the possibility that the tampering function does not modify the helper string.
- 3.
These are functions that read/write on an arbitrary subset of bits with specific cardinality.
- 4.
- 5.
The term “stateless system” refers to a system which does not store any additional state (e.g., data structure) except from a uniform secret key required for security.
- 6.
Note that \(\textsf{A}\) is a valid adversary for the \((\mathcal {F},\delta )\)-pre-NM experiment since \(\textsf{A}\) is valid w.r.t. tamper-simulatability, i.e., \(f_i \in \mathcal {F}\).
- 7.
The reason is that an attacker in this setting can always decode the message, and re-encode a related value.
References
Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 459–468. ACM Press (2015)
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press
Aggarwal, D., Obremski, M.: A constant rate non-malleable code in the split-state model. In: 61st FOCS, pp. 1285–1294. IEEE Computer Society Press (2020)
Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise tampering and permutations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_26
Alamélou, Q., et al.: Pseudoentropic isometries: a new framework for fuzzy extractor reusability. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.) ASIACCS 18, pp. 673–684. ACM Press (2018)
Apon, D., Cachet, C., Fuller, B., Hall, P., Liu, FH.: Nonmalleable digital lockers and robust fuzzy extractors in the plain model. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. LNCS, vol. 13794. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_13
Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes for small-depth circuits. In: Thorup, M. (ed.) 59th FOCS, pp. 826–837. IEEE Computer Society Press (2018)
Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable codes against bounded polynomial time tampering. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 501–530. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_17
Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_31
Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \({\sf A\mathit{}{\sf C}}^0\), decision trees, and streaming space-bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_20
Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 413–434. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_15
Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_27
Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 82–91. ACM Press (2004)
Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_9
Buhan, I., Doumen, J., Hartel, P.H., Veldhuis, R.N.J.: Fuzzy extractors for continuous distributions. In: Bao, F., Miller, S. (eds.) ASIACCS 07, pp. 353–355. ACM Press (2007)
Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_5
Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.D.: Reusable fuzzy extractors for low-entropy distributions. J. Cryptol. 34(1), 2 (2021)
Canetti, R., Pass, R., shelat, A.: Cryptography from sunspots: how to use an imperfect reference string. In: 48th FOCS, pp. 249–259. IEEE Computer Society Press
Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 285–298. ACM Press (2016)
Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 1171–1184. ACM Press (2017)
Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: 55th FOCS, pp. 306–315. IEEE Computer Society Press
Cheon, J.H., Jeong, J., Kim, D., Lee, J.: A reusable fuzzy extractor with practical storage size: modifying Canetti et al.’s construction. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 28–44. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_3
Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M. (ed.) ITCS 2014, pp. 155–168. ACM (2014)
Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_19
Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_27
Dachman-Soled, D., Komargodski, I., Pass, R.: Non-malleable codes for bounded parallel-time tampering. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 535–565. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_18
Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.-D.M.: Efficient fuzzy extraction of PUF-induced secrets: theory and applications. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 412–431. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_20
Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_14
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31
Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 601–610. ACM Press (2009)
Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable Codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14
Dziembowski, S., Pietrzak, K., Wichs, D.: Non-Malleable Codes. In: Yao, A.C.C. (ed.) ICS 2010, pp. 434–452. Tsinghua University Press (2010)
Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_4
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuously non-malleable codes in the split-state model. J. Cryptol. 33(4), 2034–2077 (2020)
Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_7
Feng, H., Tang, Q.: Computational robust (Fuzzy) extractors for CRS-dependent sources with minimal min-entropy. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 689–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_24
Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10
Fuller, B., Peng, L.: Continuous-source fuzzy extractors: source uncertainty and insecurity. In: IEEE International Symposium on Information Theory, ISIT 2019, Paris, France, July 7-12, 2019, pp. 2952–2956. IEEE (2019)
Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 277–306. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_10
Fuller, B., Reyzin, L., Smith, A.D.: When are fuzzy extractors possible? IEEE Trans. Inf. Theory 66(8), 5282–5298 (2020)
Gupta, D., Maji, H.K., Wang, M.: Explicit rate-1 non-malleable codes for local tampering. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 435–466. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_16
Islam, M.M., Safavi-Naini, R., Kneppers, M.: Scalable behavioral authentication. IEEE Access 9, 43458–43473 (2021)
Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_19
Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 156–171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_11
Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317–1328. ACM Press (2016)
Kiayias, A., Liu, F.-H., Tselekounis, Y.: Non-malleable codes for partial functions with manipulation detection. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_20
Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 1144–1156. ACM Press (2017)
Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)
Parente, V.P., van de Graaf, J.: A practical fuzzy extractor for continuous features. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 241–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2_12
Rasmussen, P.M.R., Sahai, A.: Expander graphs are non-malleable codes. In: Kalai, Y.T., Smith, A.D., Wichs, D. (eds.) ITC 2020, pp. 6:1–6:10. Schloss Dagstuhl (Jun.)
Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Design Automation Conference, DAC 2007, San Diego, CA, USA, June 4–8, 2007, pp. 9–14. IEEE (2007)
Verbitskiy, E.A., Tuyls, P., Obi, C., Schoenmakers, B., Skoric, B.: Key extraction from general non discrete signals. IEEE Trans. Inf. Forensics Secur. 5(2), 269–279
Wen, Y., Liu, S.: Reusable fuzzy extractor from LWE. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 13–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_2
Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 459–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_17
Wen, Y., Liu, S., Gu, D.: Generic constructions of robustly reusable fuzzy extractor. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 349–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_12
Wen, Y., Liu, S., Hu, Z., Han, S.: Computational robust fuzzy extractor. Comput. J. 61(12), 1794–1805 (2018)
Woodage, J., Chatterjee, R., Dodis, Y., Juels, A., Ristenpart, T.: A new distribution-sensitive secure sketch and popularity-proportional hashing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 682–710. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_23
Zhou, Y., Liu, S., Cui, N.: Computational fuzzy extractor from LWE. Theor. Comput. Sci. 945, 113681 (2023)
Acknowledgements
The first author was supported by the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM). The second author was supported by project SERICS (PE00000014) and by project PARTHENON (B53D23013000006), under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Francati, D., Venturi, D. (2024). Non-malleable Fuzzy Extractors. In: Pöpper, C., Batina, L. (eds) Applied Cryptography and Network Security. ACNS 2024. Lecture Notes in Computer Science, vol 14583. Springer, Cham. https://doi.org/10.1007/978-3-031-54770-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-54770-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54769-0
Online ISBN: 978-3-031-54770-6
eBook Packages: Computer ScienceComputer Science (R0)