Abstract
Physical attacks are serious threats to cryptosystems deployed in the real world. In this work, we propose a microarchitectural end-to-end attack methodology on generic lattice-based post-quantum key encapsulation mechanisms to recover the long-term secret key. Our attack targets a critical component of a Fujisaki-Okamoto transform that is used in the construction of almost all lattice-based key encapsulation mechanisms. We demonstrate our attack model on practical schemes such as Kyber and Saber by using Rowhammer. We show that our attack is highly practical and imposes little preconditions on the attacker to succeed. As an additional contribution, we propose an improved version of the plaintext checking oracle, which is used by almost all physical attack strategies on lattice-based key-encapsulation mechanisms. Our improvement reduces the number of queries to the plaintext checking oracle by as much as \(39\%\) for Saber and approximately \(23\%\) for Kyber768. This can be of independent interest and can also be used to reduce the complexity of other attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Alagic, G., et al.: Status Report on the third round of the nist post-quantum cryptography standardization process (2022). https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf. Accessed 26 Jun 2023
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with Errors. Cryptology ePrint Archive, Report 2015/046 (2015). https://eprint.iacr.org/2015/046
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10–12, 2016, pp. 327–343. USENIX Association (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalowicz, J.-C.: GLV/gls decomposition, power analysis, and attacks on ECDSA signatures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_14
Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak: breaking ECDSA with less than one bit of nonce leakage. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. CCS 2020, New York, NY, USA, pp. 225–242, Association for Computing Machinery (2020). https://doi.org/10.1145/3372297.3417268
Aumasson, J.P., et al.: SPHINCS+: stateless hash-based signatures. https://sphincs.org/. Accessed 28 Jun 2023
Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_20
Aweke, Z.B., et al.: ANVIL: software-based protection against next-generation rowhammer attacks. ACM SIGPLAN Notices 51(4), 743–755 (2016)
Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T., Rietman, R., Saarinen, M.-J.O., Tolhuizen, L., Zhang, Z.: Round5: compact and fast post-quantum public-key encryption. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 83–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_5
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Berthet, P., Tavernier, C., Danger, J., Sauvage, L.: Quasi-linear Masking to Protect Kyber against both SCA and FIA. IACR Cryptol. ePrint Arch. p. 1220 (2023). https://eprint.iacr.org/2023/1220
Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_8
Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24–28, 2016, pp. 1006–1018. ACM (2016). https://doi.org/10.1145/2976749.2978425
Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM (2017). http://eprint.iacr.org/2017/634
Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.173-214
Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopadhyay, D.: ExplFrame: exploiting page frame cache for fault analysis of block ciphers. In: 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9–13, 2020, pp. 1303–1306. IEEE (2020). https://doi.org/10.23919/DATE48585.2020.9116219
Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopdhyay, D.: Rowhammer Induced Intermittent Fault Attack on ECC-hardened memory (2020). https://eprint.iacr.org/2020/380
Cheon, J.H., Choe, H., Hong, D., Yi, M.: SMAUG: Pushing Lattice-based Key Encapsulation Mechanisms to the Limits. Cryptology ePrint Archive, Paper 2023/739 (2023). https://eprint.iacr.org/2023/739
Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with Side Information: Attacks and Concrete Security Estimation. Cryptology ePrint Archive, Report 2020/292 (2020). https://eprint.iacr.org/2020/292
Daemen, J., Rijmen, V.: Rijndael for AES. In: The Third Advanced Encryption Standard Candidate Conference, April 13–14, 2000, New York, New York, USA, pp. 343–348. National Institute of Standards and Technology (2000)
D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM (2018). http://eprint.iacr.org/2018/230
Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Dilithium: Digital Signatures from Module Lattices (2017). http://eprint.iacr.org/2017/633
Fahr, M., et al.: When frodo flips: end-to-end key recovery on frodokem via rowhammer. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. CCS 2022, New York, NY, USA, pp. 979–993. Association for Computing Machinery (2022). https://doi.org/10.1145/3548606.3560673
Fan, H., Wang, W., Wang, Y.: Cache attack on MISTY1. IACR Cryptol. ePrint Arch. p. 723 (2021). https://eprint.iacr.org/2021/723
Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU (2018). https://falcon-sign.info/falcon.pdf. Accessed 28 June 2023
Frigo, P., et al.: TRRespass: exploiting the many sides of target row refresh. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18–21, 2020, pp. 747–762. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00090
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-011-9114-1
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_13
Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks on Kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 311–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92518-5_15
Islam, S., Mus, K., Singh, R., Schaumont, P., Sunar, B.: Signature correction attack on Dilithium signature scheme. In: 7th IEEE European Symposium on Security and Privacy, EuroS &P 2022, Genoa, Italy, June 6–10, 2022, pp. 647–663. IEEE (2022). https://doi.org/10.1109/EuroSP53844.2022.00046, https://doi.org/10.1109/EuroSP53844.2022.00046
Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure KEM without Additional Hash. Cryptology ePrint Archive, Report 2017/1096 (2017). https://eprint.iacr.org/2017/1096
Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental study of DRAM disturbance errors. ACM SIGARCH Comput. Archit. News 42(3), 361–372 (2014)
KpqC: Korean post-quantum cryptography competition (2022). https://www.kpqc.or.kr/competition.html. Accessed 28 Jun 2023
Kundu, S., D’Anvers, J., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.: Higher-order masked saber. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. Lecture Notes in Computer Science, vol. 13409, pp. 93–116. Springer, Cham (2022)
Kwong, A., Genkin, D., Gruss, D., Yarom, Y.: Rambleed: reading bits in memory without accessing them (2020). https://doi.org/10.1109/SP40000.2020.00020
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-9938-4
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micron: DDR4 SDRAM Datasheet (2016)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Mujdei, C., Beckers, A., Bermundo, J., Karmakar, A., Wouters, L., Verbauwhede, I.: Side-Channel Analysis of Lattice-Based Post-Quantum Cryptography: Exploiting Polynomial Multiplication. IACR Cryptol. ePrint Arch. p. 474 (2022). https://eprint.iacr.org/2022/474
Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on the luov signature scheme. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. CCS 2020, New York, NY, USA, pp. 1071–1084. Association for Computing Machinery (2020). https://doi.org/10.1145/3372297.3417272
Mutlu, O., Kim, J.S.: RowHammer: A Retrospective. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(8), 1555–1571 (2020). https://doi.org/10.1109/TCAD.2019.2915318
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1
Pessl, P., Prokop, L.: Fault attacks on CCA-secure lattice KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 37–60 (2021). https://doi.org/10.46586/tches.v2021.i2.37-60
Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Inf. Comput. 3(4), 317–344 (2003). https://doi.org/10.26421/QIC3.4-3
Rajendran, G., Ravi, P., D’Anvers, J., Bhasin, S., Chattopadhyay, A.: Pushing the limits of generic side-channel attacks on LWE-based KEMs - parallel PC oracle attacks on Kyber KEM and beyond. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 418–446 (2023). https://doi.org/10.46586/tches.v2023.i2.418-446
Ravi, P., Chattopadhyay, A., Baksi, A.: Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New Results. IACR Cryptol. ePrint Arch. p. 737 (2022). https://eprint.iacr.org/2022/737
Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 307–335 (2020), https://doi.org/10.13154/tches.v2020.i3.307-335
Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng shui: hammering a needle in the software stack. In: Proceedings of the 25th USENIX Conference on Security Symposium. SEC 2016, pp. 1–18. USENIX Association, USA (2016)
Regev, O.: Lecture notes: Lattices in computer science. https://cims.nyu.edu/ regev/teaching/lattices_fall_2009
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342
Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel privileges. Black Hat 15, 71 (2015)
Settana, M., Naila, A., Yaseen, H., Huwaida, T.: Cache-timing attack against AES crypto-systems countermeasure using weighted average masking time algorithm. J. Inf. Warfare 15(1), 104–114 (2016). https://www.jstor.org/stable/26487484
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society (1994). https://doi.org/10.1109/SFCS.1994.365700
Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-valued plaintext-checking side-channel attacks on post-quantum KEMs (2022). https://eprint.iacr.org/2022/940
Tatar, A., Giuffrida, C., Bos, H., Razavi, K.: Defeating software mitigations against rowhammer: a surgical precision hammer. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 47–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_3
Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44
Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, R.: One bit flips, one cloud flops: cross-VM row hammer attacks and privilege escalation. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10–12, 2016, pp. 19–35. USENIX Association (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20–22, 2014, pp. 719–732. USENIX Association (2014). https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
Acknowledgements
This work was supported in part by Horizon 2020 ERC Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders with reference number VR20192203, BE QCI: Belgian-QCI (3E230370) (see beqci.eu), and Intel Corporation.
Angshuman Karmakar is funded by FWO (Research Foundation - Flanders) as a junior post-doctoral fellow (contract number 203056/1241722N LV). Puja Mondal and Angshuman Karmakar are also supported by C3iHub, IIT Kanpur.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mondal, P., Kundu, S., Bhattacharya, S., Karmakar, A., Verbauwhede, I. (2024). A Practical Key-Recovery Attack on LWE-Based Key-Encapsulation Mechanism Schemes Using Rowhammer. In: Pöpper, C., Batina, L. (eds) Applied Cryptography and Network Security. ACNS 2024. Lecture Notes in Computer Science, vol 14585. Springer, Cham. https://doi.org/10.1007/978-3-031-54776-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-54776-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54775-1
Online ISBN: 978-3-031-54776-8
eBook Packages: Computer ScienceComputer Science (R0)