
A practical key-recovery attack on LWE-based key-
encapsulation mechanism schemes using Rowhammer

Puja Mondal1 , Suparna Kundu2 ,
Sarani Bhattacharya3 , Angshuman Karmakar1,2 , and Ingrid Verbauwhede2

1 Department of Computer Science and Engineering, IIT Kanpur, India
{pujamondal,angshuman}@cse.iitk.ac.in

2 COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium
{suparna.kundu,ingrid.verbauwhede}@esat.kuleuven.be

3 Department of Computer Science and Engineering, IIT Kharagpur, India
sarani@cse.iitkgp.ac.in

Abstract. Physical attacks are serious threats to cryptosystems deployed in
the real world. In this work, we propose a microarchitectural end-to-end attack
methodology on generic lattice-based post-quantum key encapsulation mecha-
nisms to recover the long-term secret key. Our attack targets a critical compo-
nent of a Fujisaki-Okamoto transform that is used in the construction of almost
all lattice-based key encapsulation mechanisms. We demonstrate our attack
model on practical schemes such as Kyber and Saber by using Rowhammer.
We show that our attack is highly practical and imposes little preconditions on
the attacker to succeed. As an additional contribution, we propose an improved
version of the plaintext checking oracle, which is used by almost all physical
attack strategies on lattice-based key-encapsulation mechanisms. Our improve-
ment reduces the number of queries to the plaintext checking oracle by as much
as 39% for Saber and approximately 23% for Kyber768. This can be of indepen-
dent interest and can also be used to reduce the complexity of other attacks.

Keywords: Post-quantum cryptography · Key-encapsulation mechanism ·
micro-architecture attacks · Rowhammer · Saber · Kyber

1 Introduction

Post-quantum cryptography (PQC) refers to cryptographic protocols and algorithms
designed to be secure against attacks by both classical and quantum computers. A
large quantum computer can easily subvert the security assurance of our current
widely used public-key cryptographic (PKC) schemes based on integer factoriza-
tion [52] and elliptic curve cryptography [40] using Shor’s [55] and Proos-Zalka’s [46]
algorithm respectively. Therefore, it is imperative that we replace our existing PKC
cryptographic with PQC schemes. However, the transition to post-quantum cryp-
tography is a complex process that involves careful evaluation, standardization, and
implementation of new cryptographic algorithms. A watershed moment in this process
is the recently concluded standardization procedure by the National Institute of Stan-
dards and Technology (NIST) [1]. NIST proposed the key-encapsulation mechanism

ar
X

iv
:2

31
1.

08
02

7v
1

 [
cs

.C
R

]
 1

4
N

ov
 2

02
3

https://orcid.org/0009-0006-7300-8435
https://orcid.org/0000-0003-4354-852X
https://orcid.org/0000-0002-4190-2671
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0000-0002-0879-076X

2 P. Mondal et al.

(KEM) Kyber [14] and digital signature schemes Dilithium [22], Falcon [25] and
SPHINCS+ [6] as PQC standards.

Nevertheless, a pivotal step before a cryptosystem can be deployed for widespread
public use is the assessment of its physical security. It is not a rare instance when
the security of a mathematically secure cryptosystem is completely compromised by
physical attacks [4,12,7]. During the standardization process, NIST also highlighted
resilience against physical attacks as one of the important criteria in the selection
of standards. For physical security assessments, usually, two primary types of attacks
are considered. First, passive side-channel attacks (SCA), that work by exploiting
flaws in the implementation and using leakage of secret information through physical
channels such as power consumption, electromagnetic radiation, acoustic channels,
etc. Second, active fault attacks (FA), that work by disrupting the normal execution
of a cryptographic scheme through laser radiation, power glitches, etc., and then
manipulate the result of the faulty execution to extract the secret key. There exists
another type of physical attack known as microarchitectural (MA) attacks. This
type of attack exploits the vulnerabilities or imperfections in the architecture of the
platform where the cryptographic scheme executes. A strong motivation for studying
MA attacks is that while traditional side-channel and fault attacks primarily target
small, low-power devices such as microcontrollers e.g. Cortex-M devices and Internet
of Things (IoT) devices, MA attacks can affect a much broader range of platforms such
as enterprise servers, cloud platforms where multiple honest processes share the same
hardware with a potentially hostile process. The two former physical attacks require the
attacker to have physical access to the target device, but MA attacks can be performed
remotely. Also, there are some relatively simpler methods like constant-time coding
techniques that can help defend against some side-channel attack vectors like simple-
power analysis, but for MA attacks e.g. Rowhammer-induced bit-flips [43] cannot be
easily mitigated through coding practices alone. In the past, successful MA attacks
on classical cryptographic schemes such as elliptic-curve discrete signature algorithms
and symmetric schemes such as AES [20] have been demonstrated before [5,44,24,54].

Currently, there exist studies on physical attacks on PQC using SCA and
FA [45,49,41,30] and some generic countermeasures such as masking and shuf-
fling [15,58,35]. At this moment there exists only a handful of MA attacks on
PQ schemes such as digital signature schemes Dilithium and LUOV [31,42] and
key-encapsulation mechanism (KEM) Frodo [23]. Among these only Dilithium is a
PQC standard. Therefore, we can safely admit that currently there is a huge gap
in the literature regarding the assessment and countermeasures of MA attacks. As
PQC seems to be prevalent in the near future it is crucial to study MA attacks in
the context of PQC schemes. Hence, in this work, we focus on mounting efficient MA
attacks on PQC schemes. We briefly summarize our contributions below.
– We study MA attacks or specifically Rowhammer attacks on KEMs based on

hard lattice problem learning with errors (LWE). Most LWE-based KEMs share
a generic framework Lyubashevsky et al. [38] to first create public-key encryption
and then convert it to key-encapsulation mechanism using a version of Fujisaki-
Okamoto transform [27]. We sketch an outline of how such generic constructions
can be attacked using a Rowhammer-based MA attack. In Rowhammer attacks

Rowhammer on Lattice-base KEMs 3

an attacker repeatedly accesses the memory rows adjacent to the victim process’s
memory row. Such repeated access can result in bit-flips in the victim process’s
memory row. Rowhammer can be single-sided when the attacker accesses memory
rows only on one side of the target memory row or more aggressively double-sided,
where the attacker accesses memory rows above and below the target memory
row. This happens due to imperfections in the dynamic random-access memory
(DRAM). For interested readers, we have provided more details of Rowhammer
in Appendix A.

– Physical attacks on chosen-ciphertext attack (CCA) secure KEMs [30,45,41,49]
work by running the decapsulation procedure or the plaintext checking oracle
multiple times with different ciphertexts. At each run side-channel traces are
captured or faults are induced which reveal some part of the key. Therefore,
reducing the number of invoking the plaintext checking oracle can make the attack
more practical. The work in [47] proposed a method to reduce the number of times
the plaintext checking oracle is invoked. Here, we further reduced the number of
times the oracle is invoked by as much as 39% for Saber and approximately 23%
for Kyber768 compared to the previous work using some offline computations.
The advantage of our method is not limited to this work only and can be of
independent interest in the context of physical attacks on lattice-based KEMs.

– We choose two PQ KEMs Kyber [14] and Saber [21] to demonstrate the practi-
cality of our attack. Kyber is a PQ KEM standard proposed by NIST and Saber
was a finalist of the NIST PQC standardization procedure. We tailor our attack
according to the design choices and parameters of Saber and Kyber.

– We show an end-to-end key-recovery method on Saber and Kyber based on
remote software-induced faults only without using electromagnetic radiation,
voltage glitch, laser radiation, etc. Our attack is very realistic as our conditions
of attack are very relaxed compared to the previous works.

– Finally, we discuss the effect of existing physical attack countermeasures on our
attack.

1.1 Paper Organization

The structure of this paper is organized as follows. The paper is organized as follows:
Section 2 provides an overview of the necessary background information and intro-
duces the notation and definitions used throughout the paper. Section 3 reviews the
previous research conducted in the field. Section 4 presents the generic fault model
of LPR schemes and explains its application to Kyber and Saber. Section 5 focuses
on the practical realization of the fault model.

2 Preliminaries

Notations: We denote Zq to represent the ring of integers modulo q. We use lowercase
letters, lowercase letters with a bar, and uppercase letters to denote an element in Zq,
vectors containing elements in Zq, and matrices with elements in Zq respectively. Let
x∈Zq, then xi represents the i-th bit of x. Bold lowercase letters are used to denote

4 P. Mondal et al.

elements in Rq where Rq is the polynomial ring Zq[x]/(x
n+1). For i∈{0, 1, ..., n−1},

x[i] represents the i-th coefficient of the polynomial x∈Rq. Rl
q represents the ring with

vectors of l polynomials of Rq and the ring with matrices of l×k polynomials of Rq

is presented by Rl×k
q . We use bold lowercase with a bar and bold uppercase letters to

denote elements in Rl
q and Rl×k

q , respectively. For x̄∈Rl
q and X∈Rl×k

q , x̄i denotes the
i-th polynomial of the vector x̄ and Xi,j denotes the (i, j)-th polynomial of the matrix
X. The product of two polynomials x and y is denoted by xy. The inner product of x̄
and ȳ in Rl

q is equal to
∑l−1

i=0x̄iȳi is denoted by ⟨x̄, ȳ⟩. If x is sampled from the set S
according to the distribution X , then we denote it as x←X (S). We use U to represent
uniform distribution and βν to indicate centered binomial distribution (CBD) with the
standard deviation

√
ν/2. ⌊x⌋ outputs the largest integer, which is less than or equal

to x. ⌊x⌉ represents the rounding of x to the nearest integer, which is equal to ⌊x+ 1
2⌋.

r≫x and r≪x denotes r shifted by x bit positions towards right and left respectively.
All these operations can be extended to the polynomials, vectors, and matrices by
applying them coefficient-wise. The cardinality of a set S is denoted by |S|.

2.1 Learning with errors (LWE) problem and its variants

LWE problem: Let us assume A←U(Zl×k
q), error ē←χ(Zl

q), secret s̄←χ(Zk
q),

b̄=As̄+ē∈Zl
q, and b̄′←U(Zl

q), where l, k, n are positive integers and χ is a distribu-
tion. Then, the decision version of the LWE problem states that distinguishing between
(A, b̄) and (A, b̄′) is hard. This hardness depends on the parameter (n, l, k, q, χ) [51].
Ring-LWE (RLWE) problem: If we use the polynomial ring Rq=Zq[X]

/
(xn+1)

instead of Zq and l=k=1, then we call the problem as Ring learning with error
problem (RLWE) [38]. So, in the RLWE problem, given a←U(Rq), e, s←χ(Rq),
b=as+e∈Rq, and b′←U(Rq), it is hard to distinguish between (a, b) and (a, b′).
This hardness depends on the parameter (n, q, χ).
Module-LWE (MLWE) problem: In the MLWE problem [37], A←U(Rl×l

q) and
ē, s̄←χ(Rl

q), b̄=As̄+ē∈Rl
q, and b̄′←U(Rl

q). The MLWE problem states that it
is hard to distinguish between (A, b̄) and (A, b̄′). Here, the hardness depends on
the parameter (n, l, q, χ).
Learning with Rounding (LWR) problem: In this problem, the error sampling
is replaced by the rounding operation. Let us assume A←U(Zl×k

q), s← χ(Zk
q),

b=⌊pq(As)⌉∈Zl
p, and b′←U(Zl

p), where q>p>0. Then the LWR problem states
that distinguishing between (A, b) and (A, b′) is hard. This hardness depends on
the parameter (n, l, k, q, χ) [10].

The ring-LWR (RLWR) problem and the module-LWR (MLWR) problem can
be defined from the LWR problem in a similar way as the RLWE problem and the
MLWE problem are defined from the LWE problem.

2.2 LPR public-key encryption

Lyubashevsky, Peikert, and Regev proposed the LPR public-key encryption (PKE)
scheme based on the RLWE problem [38] as shown in Figure 1. Throughout this
paper, we call this scheme as LPR.PKE. Here all the polynomials are elements of

Rowhammer on Lattice-base KEMs 5

Rq, where q is a prime number and n is a power of two. In LPR.PKE.KeyGen, the
secret s← χ(Rq) and the error e← χ(Rq). Here, χ is the Gaussian distribution,
which is replaced by CBD in Kyber and Saber. a←U(Zq) and b=as+e∈Rq. This
algorithm declares pk=(a, b) as public key and saves sk=(a, s) as private key. In the
LPR.PKE.Enc algorithm, a part of the ciphertext u is computed similarly to the public
key b. The other part of the ciphertext v contains message m and is computed as
v=br+e2+Encode(m). Here the Encode function is defined as Encode(m)=m·⌊q2⌋
i.e. multiplication of each message coefficient m[i] with q

2 . Then this algorithm outputs
c=(u, v) as the ciphertext of the message m. The LPR.PKE.Dec algorithm takes
the ciphertext c, and the secret key s as input, and then computes m′=v−us. Now,

m′=v−us=(br+e2+Encode(m)−(ar+e1)s

=(as+e)r+e2+m·⌊q/2⌋−(ar+e1)s=m·⌊q/2⌋+er+e2−e1s

Here, d=er+e2−e1s is known as decryption noise. The LPR.PKE.Dec algorithm
uses the Decode function to remove the decryption noise from the message polynomial
m′ and recovers the message m∈{0, 1}n.
Fujisaki-Okamoto (FO) transformation: The LPR.PKE scheme provides secu-
rity against chosen-plaintext attacks (CPA) but does not offer protection against
chosen-ciphertext attacks (CCA). FO transform is a generic transform to transform a
CPA-secure PKE to CCA-secure KEM. Due to the presence of noise in the LPR-based
scheme, a variant of FO transformation proposed by Jiang et al. [32] is generally
used. The algorithms of this KEM are shown in Figure 2. A more detailed discussion
regarding this FO transformation is provided in Appendix B.

2.3 Kyber

Kyber [14] is an LPR-based KEM with MLWE as its underlying hard problem. In
the key generation algorithm of Kyber, the secret s̄←βη1(R

l
q) and error ē←βη1(R

l
q).

One part of the public key A←U(Rl×l
q) and the another part of the public key is

b̄=As̄+ ē. The secret key is sk=(A, s̄). In the encryption algorithm, the errors

LPR.PKE.KeyGen()

1. aaa←U(Rq)
2. sss, eee←χ(Rq)
3. bbb=aaasss+eee
4. return (pk=(aaa, bbb), sk=(aaa, sss))

LPR.PKE.Enc(pk=(aaa, bbb),
message m∈{0, 1}n)

1. rrr, e1e1e1, e2e2e2←χ(Rq)
2. uuu=aaarrr+e1e1e1
3. vvv=bbbrrr+e2e2e2+Encode(m)
4. return c=(uuu,vvv)

LPR.PKE.Dec(sk=(aaa, sss), c=(uuu, vvv))

1. mmm′=vvv−uuusss
2. m=Decode(mmm′)
3. return m

Fig. 1: CPA secure LPR.PKE [38]

6 P. Mondal et al.

Table 1: Parameter set of Kyber and Saber corresponding to different security levels

Scheme
Name

Parameters Post-quantum
Security

Failure
Probability

NIST
Security
Levell n q p T

CBD
parameters

Kyber

p=2du T=2dv η1 η2
Kyber512 2

256 3329
210 24 3 2 2107 2−139 1

Kyber768 3 210 24 2 2 2166 2−164 3
Kyber1024 4 211 25 2 2 2232 2−174 5

Saber

q=2ϵq p=2ϵp T=2ϵT µ
LightSaber 2

256 213 210
23 5 2107 2−120 1

Saber 3 24 4 2172 2−136 3
FireSaber 4 26 3 2236 2−165 5

r̄←βη1(R
l
q) and the errors ē1←βη2(R

l
q) and e2←βη2(Rq). A part of the ciphertext

ū is computed similarly to the public key b̄ generation. Another part of the ciphertext
v= ⟨b̄, r̄⟩+e2+Encode(m), where Encode(m)= ⌊m· q2⌋. Then this algorithm uses
compressq to compress each coefficient of ū to du bits and v to dv bits. c=(̄c1, c2)=
(compressq(ū), compressq(v, dv)) serves as the ciphertext associated with the message
m. The decryption algorithm first decompresses both components c̄1 and c2 of the
ciphertext c with Decompressq function. Suppose ū′ = Decompressq(c̄1, du) and
v′=Decompressq(c2, dv). Then it computes Decode(v′−⟨̄s, ū′⟩)=Compressq((v

′−
⟨̄s, ū′⟩), 1) to recover the message m. There are three security versions of Kyber based
on the parameter set, and we include them in Table 1. In this paper, unless otherwise
specified we refer to the parameter set of Kyber768 with Kyber. For more details,
we refer the interested reader kindly to the original paper [14] for further details.

KEM.KeyGen()

1. (pk, sk)=PKE.KeyGen()
2. z←U({0, 1}n)
3. return (pk, sk′=(sk||pk||H(pk)||z)

KEM.Encaps(pk)

1. m←U({0, 1}n)
2. (K′, r)=G(m, H(pk))
3. ct=PKE.Enc(pk, m, r)
4. K=F(K′, H(ct))
5. return (ct, K)

KEM.Decaps(sk′=(sk||pk||H(pk)||z), ct)

1. m′=PKE.Dec(sk, ct)
2. (K′′, r′)=G(m′, H(pk))
3. c=LPR.PKE.Enc(pk, m′, r′)
4. if: ct=c return K=F(K′′, H(ct))
5. else: return K=F(z, H(ct))

Fig. 2: CCA secure KEM based on LPR.PKE using FO transformation [32]

Rowhammer on Lattice-base KEMs 7

2.4 Saber

Saber [21] is a KEM based that also follows the LPR model. Saber is based on the
hard problem MLWR. Here q in Rq is power-of-two. In the key generation algorithm
of Saber, the secret s̄← βµ(R

l
q). The public key here is (A, b̄) where A ∈ R is

an element of Rl×l
q and is sampled uniformly and b̄= (As̄+ h̄)≫ (ϵq−ϵp) ∈ Rl

p.
The vector h̄ is needed for rounding, and it consists of constant polynomials with
each coefficient equal to 2ϵq−ϵp−1. In the case of the encryption algorithm, s̄′ is also
sampled from the CBD distribution βµ. The key contained part of the ciphertext
ū is computed similarly to the public key b̄. The message contained part of the
ciphertext v is computed as (⟨b̄, s̄′⟩+h1−Encode(m) mod p)≫ ϵp−ϵT ∈RT . h1

is a constant polynomial with each coefficient equal to 2ϵq−ϵp−1. It is required for
rounding. Let c=(ū, v) is the ciphertext corresponding to the message m. Then, the
decryption algorithm takes the ciphertext c=(ū, v) and secret s̄ as inputs. It computes
(⟨ū, s̄⟩ mod p−2ϵp−ϵTv+h2) mod p≫ (ϵp−1)∈R2 to find the decrypted message.
h2 is also a constant polynomial with each coefficient equal to 2ϵp−2−2ϵp−ϵT−1. Like
Kyber, Saber also has three security versions depending on the parameter set, and we
present them in Table 1. Similar to Kyber, in this paper, we refer to the parameter set
of Saber with l=3 with Saber, and we refer to the original paper [21] for further details.

2.5 Related works

Lattice-based post-quantum KEMs are vulnerable to side-channel attacks. A timing
attack on the KEM.Decaps has been shown in [29], it targets the non-constant time
implementation of the ciphertext equality checking (Line 4 in KEM.Decap algorithm of
Figure 2). [49], proposed a generic and practical Electromagnetic (EM) power analysis
assisted CCA on LWE-based KEMs. They also target the KEM.Decaps in their attack.
They have constructed a plaintext-checking oracle O with the help of an EM power
attack, which can distinguish two particular messages m1=00...0 (all zeros) and m2=
00...01 (all zeros except the LSB). This oracle provides single-bit information related
to one coefficient of the secret key. Continuing the same methods, the attacker can
find the whole secret key. This paper has shown that 2000 to 4000 queries are required
to retrieve the complete secret key for Kyber. [56] reduced the query requirements
by creating a multiple-valued plaintext-checking oracle. Here, the attacker acquires
information regarding multiple secret key coefficients from a single query. In [47], the
authors further reduced the number of queries required to recover the whole secret keys
by improving the model of plaintext-checking oracle. One significant area of research
in this domain revolves around improving the efficiency of attacks by minimizing the
number of required quires. This reduction enables a more precise evaluation of the
cost of an optimal attack. Our attack contributes in this direction by improving the
process of using the parallel plaintext checking oracle model of the paper [47].

Rowhammer has been used to successfully attack many cryptographic primitives.
In the paper [50], researchers demonstrated a Rowhammer attack on RSA signatures.
Additionally, in [36], the authors illustrate the direct reading of RSA key bits from the
memory address. However, there is limited research on Rowhammer attacks targeting
post-quantum schemes. The current state-of-the-art in this domain focuses on a single

8 P. Mondal et al.

PKE.Decctctct

sss

G

H(pk)

K′

PKE.Enc c=(uuu′
∗,vm∗)

=?

return F(K′,ct)

yes

return F(z,ct)

no

Fig. 3: Decapsulation algorithm of KEM based on LPR.PKE (Figure 2). Here z is
a random number generated in the KEM.KeyGen() algorithm (Figure 2). The fault
location is marked in red.

work involving Rowhammer attacks on the PQC KEM Frodo [13]. This research
primarily targets the key-generation procedure, which is known to be relatively easy
to protect. In this work, we will demonstrate an end-to-end Rowhammer attack on
the decapsulation algorithm of the targeted schemes.

3 Our attack using binary decision tree on the LPR-based
schemes

Attack Surface: The KEM based on LPR.PKE shown in Figure 2 is resistant to CCA.
In such schemes, the secret key is generated using the KEM.KeyGen is non-ephemeral
i.e. stored and used for the long term. The key generation and encapsulation processes
are executed only once. Therefore, the attacker needs to recover the secret key or
the shared key from a single execution. However, the secret key remains fixed in the
decapsulation algorithm for a long time and is used to derive the shared secret key
K from multiple users. This is done to remove the huge overhead of running the
key generation process and distributing the public key each time two communicating
parties want to establish the shared secret K. However, this convenience also helps
an attacker. An attacker can now execute the decapsulation operation multiple times
and collect multiple traces or induce faults at different locations. This helps the
attacker to refine its attack strategy and increase the probability of success manifold.
This is why attacking the decapsulation operation is mostly chosen by attackers to
mount physical attacks [45,30,41,49]. So, we also choose the decapsulation method as
our target. The structure of the KEM.Decaps given in Figure 2 is shown in Figure 3.
Here we also assume the attacker can invoke the victim’s decapsulation procedure
by submitting any ciphertexts of its preference.

We assume the general Rowhammer threat model, where the attacker and victim
use two different processes in the same operating system or two virtual machines on the
same server [59]. This threat model is also used in most of the micro-architectural at-
tacks work [60]. Here the attacker shares the same hardware responsible for performing

Rowhammer on Lattice-base KEMs 9

the victim’s decapsulation procedure of LPR-based KEM. The attacker can also invoke
the victim’s decapsulation procedure by submitting any ciphertexts of its preference.

3.1 Implementing a parallel plaintext checking (PC) oracle.

In the KEM.Decaps procedure in Figure 2, the decrypted message m undergoes a
hashing operation G with the public key. The resulting hash, denoted as (K′, r), where
r is combined with the messagem and is used as input for the subsequent re-encryption
procedure using LPR.PKE.Enc algorithm. The generated key K′ is employed to create
a valid shared key K. It is crucial to note that the hash function G is deterministic and
solely relies on the decrypted message m and public key pk. Considering 2t messages
where a fixed chunk of t bits are changed while keeping all other n−t bits fixed, such as

m(0)=000...0︸ ︷︷ ︸
t bits

000...0︸ ︷︷ ︸
(n−t) bits

m(1)=100...0︸ ︷︷ ︸
t bits

000...0︸ ︷︷ ︸
(n−t) bits

m(2)=010...0︸ ︷︷ ︸
t bits

000...0︸ ︷︷ ︸
(n−t) bits

...

m(2t−1)=111...1︸ ︷︷ ︸
t bits

000...0︸ ︷︷ ︸
(n−t) bits

A variation of t bits in these messages leads to substantial variations in the computa-
tions performed during the hash G operation. Consequently, the ciphertexts generated
by the LPR.PKE.Enc algorithm will differ for each of the 2t messages.

In our attack scenario, we require the output to be dependent on the decrypted
message. However, if we use artificially constructed ciphertext ct (which is not
generated from LPR.PKE.Enc), then with high probability, the re-encrypted ciphertext
c and ctwill be unequal. The current implementation always returnsF(z,H(ct)) as the
shared key, which is independent of the decrypted message. In order to distinguish the
potential 2t decrypted messages of the ciphertext ct, we need the output to be message-
dependent. By omitting this equality checking condition, we ensure that the hash
value F(K′, H(ct)) is consistently returned, which is decrypted message dependent.
That allows us to differentiate between the possible decrypted messages of ct. Our
goal is to reliably acquire the shared key F(K′,H(ct)) by employing a physical attack.

In the KEM.Decaps, both Saber and Kyber use a variable named "fail". Compare
the ciphertexts ct and c by calling the function verify(c, ct, BYTES_CCA_DEC)
and storing the return value of this function in the "fail" variable. If the value of fail
is 0, then it returns the shared key F(K′, H(ct)), which depends on the decrypted
message. Otherwise, it returns the random shared key. Our aim is to flip the value
of the variable "fail" by introducing fault even when the ciphertexts are not equal.

10 P. Mondal et al.

3.2 Generic attack model using PC oracle

The first stage of our attack is to carefully craft ciphertexts c to reduce the number
of invocations of the KEM.Decaps procedure. Here, we target to recover t secret
coefficients of the secret key s at a time. We introduce a notation s

(t)
i to represent a

block of consecutive t coefficients of s, where i∈{0, 1, ...,⌊nt ⌋−1} and the last block
s
(t′)
⌊n

t ⌋
consists t′=n−(⌊nt ⌋×t) secret coefficients. This ciphertext c is then transmitted

to the oracle Oµ. Here the oracle Oµ defined as follows:

Oµ(c; x
(0), x(1),..., x(µ−1))=r, if PKE.Dec(c)=x(r),0≤r≤µ−1

. This oracle Oµ takes a ciphertext c and µ number of messages x(i) and returns the
value r such that the decrypted message of c is x(r). Upon receiving the ciphertext, the
oracleOµ processes c along with a set of potential messages x(0), x(1),..., x(µ−1). Then,
the oracle provides a response r such that LPR.PKE.Dec(sk, c)=x(r). By analyzing the
decrypted message x(r), we gain knowledge about the secret block s

(t)
i . As each secret

coefficient is intricately tied to the decrypted message, this process gradually reduces
the dimension of the secret coefficients within the targeted block. This reduction
process involves considering the relationship between the decrypted message and the
secret coefficients. After successfully reducing (not fully recovering) the dimension of
the secret block, we construct another new ciphertext cα that exploits the potential
secret block s

(t)
i . Then, repeating the aforementioned process, we further reduce the

cardinality of the secret set corresponding to each coefficient of the secret block to
get our desired secret. The challenge lies in determining how many iterations of this
process are necessary to effectively reduce the dimension of the secret block s

(t)
i .

One possible approach is to repeat until the entire secret block s
(t)
i is obtained. In

the paper [47], the authors used this approach. In this method, we need to query
the oracle Oµ ⌈log|S0|⌉ times to find each of the secret blocks s(t)i and s

(t′)
⌊n

t ⌋
, where

i∈{0, 1, ..., ⌊nt ⌋−1} and t′=n−(⌊nt ⌋×t). Here, S0 represents the set of all possible
values of a coefficient of the secret key. However, each iteration incurs a cost regarding
the number of injected faults. Since each fault is resource-intensive, the objective is
to find the secret with the minimum number of faults.

In our approach, we reduce the number of queries to the oracle Oµ to find the all
secret blocks s(t)i and s

(t′)
⌊n

t ⌋
, where i∈{0, 1, ...,⌊nt ⌋−1} and t′=n−(⌊nt ⌋×t). Here, the

previous approach is repeated ⌊log|S0|⌋ times to progressively reduce the cardinality
of the secret set corresponding to each coefficient of each secret block. Since we query
⌊log|S0|⌋ times to the oracle Oµ for each block, there will be some secrets that have
not been determined yet. So, after reducing the dimension of each secret block, an
index set, denoted as Index[], is created to track the indices of the secret coefficients
that have not been determined yet. A new ciphertext cα is then constructed based on
the Index[] set, and the values of the secret coefficients corresponding to the indices
in Index[] are updated accordingly. For simplicity, we describe this attack template
step by step for a parallelization factor t, which is a divisor of n, to unveil the secret
block gradually. The process will be similar for other parallelization factor t.

Rowhammer on Lattice-base KEMs 11

Constructing the ciphertext c Here, we present a method to construct a dummy
ciphertext ct=(u, v)∈Rq×Rq. This method helps to decrease the number of queries
required to retrieve all the secrets of the block s

(t)
0 , which contains {s[0], s[1], ..., s[t−1]}

first t coefficients of the secret polynomial s. To construct the ciphertext ct, first we
set u[0]=ku and v[j]=kvj , ∀0≤j≤ t−1 are non zero and others coefficients of u
and v are zero. Then

(v−us)=
t−1∑
j=0

kvj .x
j−

n−1∑
j=0

kus[j].x
j

So (v−us)[j]=

{
(kvj−kus[j]) if 0≤j≤t−1
(−kus[j]) Otherwise .

Hence the coefficients of the decrypted message m will be

mj=

{
Decode(kvj−kus[j]) if 0≤j≤t−1
Decode(−kus[j]) Otherwise .

We choose the value (ku, kv0, kv1,..., kvt−1
) such that

mj=

{
Depends on s[j] if 0≤j≤t−1
0 Otherwise

We construct a binary decision tree shown in Figure 4 to distinguish the secrets. We
select each value kvj from the tree accordingly. Initially, all the values kvj will be
the root value d0. Then, depending on the decrypted message, we update the value
kvj from the tree. Also, the value of ku will be fixed in an iteration because we are
constructing the dummy ciphertext to get t bits of information at a time.

To recover j′-th secret block, s(t)j′ that contains the secret coefficients s[j′], s[j′+
1], ... , s[j′ + t− 1]), where j′ > 0 we have to construct the dummy ciphertext
ct=(u, v)∈Rq×Rq, where u[n−j′]=ku and v[j]=kvj , ∀0≤j≤t−1 are non zero
and others coefficients of u and v are zero. Then

(v−us)=
t−1∑
j=0

kvj .x
j+

n−1∑
j=j′

kus[j].x
j−j′−

j′−1∑
j=0

kus[j].x
n−j′+j

Here, the decrypted message m will be

mj=

{
Decode(kvj+kus[j

′+j]) if 0≤j≤t−1
Decode(−kus[j]) Otherwise

(1)

Similarly, the value of kvj will be taken from the binary decision tree pictured
in Figure 4. We also present the algorithm to create ciphertext in Algorithm 1.

12 P. Mondal et al.

s[j]∈S0
d0

s[j]∈S1 s[j]∈S2
O 1

d2

s[j]∈S5 s[j]∈S6

O 1
d1

s[j]∈S3 s[j]∈S4

O 1

d4

s[j]∈S9 s[j]∈S10

O 1

..........

..........

Fig. 4: Binary tree to select the value of kvj =di for each v[j]

Parallel PC oracle for s
(t)
i by pruned binary decision tree: We construct a

binary decision tree with two types of nodes; one is the (Sy, dy)where secret set Sy with
|Sy|>1 and the constant values dy which helps us to split the secret set Sy into two
disjoint sets S2y+1 and S2y+2. The other one is Sy with |Sy|=1 as shown in Figure 4.
We construct the tree such that the tree will be almost complete and the distance of
node (Sy, dy) from the root node (S0, d0) will be longer if the set Sy contains the secret
coefficients with comparatively lower probability. Let h be the maximum height of the
node of format (Sy, dy) from the root node (S0, d0). Without loss of generality, assume
that this maximum height node is (Sw, dw) i.e., the distance of the node (Sw, dw) from
the root node is h and the height of the tree is h+1 which is the distance from the node
(S0, d0) to the node S2w+1. We have distinguished the secrets from the tree as follows:

First, we will query to the oracle Oµ with the constructed ciphertext ct and 2t

messages m(0), m(1),..., m(2t−1) described before. Let m(r) be the decrypted message
of the ciphertext ct, which is received from the oracle Oµ. If the j-th secret coefficient

Algorithm 1 Ciphertext creation I
Input: The index i of secret block s

(t)
i and the current secret set Srk corresponding

to the block.
Output: Ciphertext ct such that the decrypted message of c will be zero except the

first t positions.
1: for k=0;k<n;k++ do
2: u[k]=0; v[k]=0
3: end for
4: u[(n−i)%n]=ku
5: for k=0;k<t;k++ do
6: if s[i+k]∈Srk then
7: v[k]=drk
8: end if
9: end for

Rowhammer on Lattice-base KEMs 13

of the block s
(t)
i , s[i+j]∈Sy and |Sy|>1, then we will distinguish s[i+j]∈S2y+1 or

s[i+j]∈S2y+2 according to the value of the corresponding j-th message bit of m(r)

which is Decode(dy−kus[i+j])=0/1 i.e., observing the current secret set Sy in which
the secret coefficient belongs and the decrypted bit Decode(dy−kus[i+j]), we reduce
the possible values of the secrets from Sy to S2y+1 or S2y+2. In each iteration of the
block s

(t)
i , each value of kvj will traverse this tree from the root node (S0, d0) (with

height 0). In our attack, we traverse each value kvj from the tree up to the height
h−1, i.e., We pruned the highest heighted node (Sw, dw) from this tree. In this way,
we reduce the cardinality of the secret set corresponding to each secret. Since we
ignore the highest height node (Sw, dw), only secret coefficients that belong to the
secret set Sw will still be undetected.

Construction of Index[] set As we discussed before, only secret coefficients
belonging to the secret set Sw will still be undetected. Now, we will search the indexes
of the secret coefficients that are still not decided and store them in a set named
"Index[]". Then, we apply the parallel checking oracle Oµ on this Index[] set. We
describe the detailed process in the following section.

Construction of ciphertext cα from Index[]: Before arriving at this stage, we
found most secrets except the Index[] set secrets. Without loss of generality, assume
that s[i]∈ Sw ∀i∈ Index[], where Sw contains the values with a low probability
occurrence and dw is the corresponding value of ciphertext selection in the Figure 4.

Let Index[]= {α0, α1,..., αr}. Construct the dummy ciphertext ct=(u,v)∈
Rq×Rq to reduce the cardinality of the secret set corresponding to each coefficient
of the secret coefficients s[α0],..., s[αt−1] (we called it secret block s

(t)
α0,..., αt−1 of size

t). We choose u[0]= ku and v[αj] = dw, ∀0≤ j≤ t−1, as each s[αj]∈Sw. All the
remaining coefficients of u and v will be zero. Then the decrypted message will be

mj=

{
Decode(dw−kus[j]) if j=α0, ..., αt−1

Decode(−kus[j]) Otherwise
(2)

Algorithm 2 Cardinality reduction of the secret set of the block s
(t)
i

Input: The decrypted message m of the ciphertext c such that m is non-zero at most
in the first t positions.

Input: The value rk such that s[i+k]∈Srk , 0≤k≤t−1.
Output: Update [i+k] where 0≤k≤t−1.

1: for l=0;l<t;l++ do
2: if ml=0 then
3: s[i+l]∈S2rl+1

4: else
5: s[i+l]∈S2rl+2

6: end if
7: end for

14 P. Mondal et al.

Algorithm 3 Ciphertext creation II
Input: The index α0,..., αt−1 of those we want to find actual secret.
Output: Ciphertext ct such that the decrypted message of c will be zero except the

possitions α0,..., αt−1.
1: for k=0;k<n;k++ do
2: u[k]=0; v[k]=0
3: end for
4: u[0]=ku
5: for k=0;k<t;k++ do
6: v[αk]=dw
7: end for

So, the message will depend on all the αj-th secret coefficient s[αj], where 0≤j≤t−1,
which is followed by the construction of our binary decision tree shown in the Figure 4.

We query the oracle Oµ with the forged ciphertext cα and the 2t messages
m(0)′, m(1)′,..., m(2t−1)′ to get t bits of information with location α0,..., αt−1 simul-
taneously. Here, we take each message m(i)′ such that αj-th bit of the message m(i)′

is the j-th bit of i and the others bits are zero. Here, we use Algorithm 3 to create
forged ciphertexts.

Updating the secret coefficients whose index lies in Index[]: We divide
the sampling set into two distinct parts: S2w+1 = {s : Decode(dw−kus) = 0} and
S2w+2 = {s : Decode(dw−kus) = 1}, where dw is a predefined constant. Since Sw

contains the values such that the highest distance from the root node with |Sw|>1,
therefore |S2w+1| and |S2w+2| must be 1. Otherwise, it violates our assumption of the
set Sw. So, querying the oracle Oµ with one ciphertext cα and the above messages
m(0)′, m(1)′, ... , m(2t−1)′, we will get a decrypted message as a response. This
decrypted message decides the t number of secret coefficients s[α0], s[α1] ..., s[αt−1]
at a time. So, running the process ⌈|Index[]|t ⌉ times, we will find the whole secret
with mixed signs and in a different order. We described the process of finding the
secret in actual order. Also, from Equation 1, we can see that for the secret block s

(t)
j′ ,

each j-th message mj will depend on the secret coefficient −s[j′+j], 0≤j≤t−1. So
basically, we are decreasing the dimension secret coefficients s[0], ..., s[t−1], −s[n−
t], −s[n−t+1]..., −s[n−1], −s[n−2t],..., −s[n−t−1], ···−s[t], −s[t+1], ..., −s[2t−1].
We transformed it into the actual secret block using the Algorithm 4.

Number of queries: Here (Sw, dw) is the most distanced node from the root node
with |Sw|>1 and containing secrets occurring with comparatively lower probability.

1. Best case: If all the secret values lie in S0−Sw, then the number of queries will
be minimum because, in this case, we need ⌊log|S0|⌋ queries to find each block
of secrets si[j], si[j+1], ..., si[j+t−1] of blocksize t. The total number of queries
will be: ⌈nt ⌉×⌊log|S0|⌋.

2. Average case: Let E1 be the expected number the secret coefficients those belongs
to Sw. Then the total number of queries will be: (⌈nt ⌉×⌊log|S0|⌋)+(⌈E1

t ⌉).

Rowhammer on Lattice-base KEMs 15

Algorithm 4 Rotating secret coefficients
Input: The secret s is in the sequence s[0], ..., s[t−1], −s[n−t], −s[n−t+1], ..., −s[n−

1], −s[n−2t], ..., −s[n−t−1], ···=s1
Output: The secret s with actual order i.e.,(s[0], s[1], ..., s[n−1])

1: for j=0;j<t;j++ do
2: s[j]=s1[j];
3: end for
4: for j=1;j<⌊n

t
⌋;j++ do

5: for k=0;k<t;k++ do
6: s[t∗j+k]=−s1[(n−t∗j+k)%n];
7: end for
8: end for
9: Return s

With our method, the number of queries for the average case decreases compared
to the state-of-the-art works [56,47].

3.3 Model for Kyber and Saber

Kyber and Saber are based on the module-LWE and module-LWR problems, respec-
tively i.e., here, the modules Rl

q are used for the secret and the ciphertext b̄′ instead
of the ring Rq. But if we construct c=(b̄′, v) as follows:

b̄′
i[j]=

{
ku, if i=0,j=0

0, otherwise
and v[j]=

{
kvj , if 0≤j≤t−1
v, otherwise,

where ku,kvj are constants. Then the problem reduces to the generic LPR prob-
lem, i.e., to the ring problem. Therefore, here the total number of queries will be
l× the number of queries for LPR. We use the corresponding di from Table 2
and 3 for Kyber768 and the Saber, respectively. We will construct the corresponding
binary decision tree from Table 2 and 3 and construct our ciphertext accordingly. For
Kyber768, we have seen that for ku=38, v=14 and kvj =di. From Table 2, we can
recover the secret by a similar process mentioned in the previous section.

Number of queries for Kyber768 and Saber: According to Table 2, for Ky-
ber768 S4 will be the highest distanced node from the root node containing secrets
with comparatively low probability and |S4|>1. Also, Table 3 shows that for Saber,
S7 will be that specified node above. For Kyber768 and Saber, l=3, we consider our
best case and average cases of both the algorithms for l=3.

1. Best case: In case of Kyber768, if all the secret values lie in S0−S4, then the
number of queries will be minimum because, in this case, we need 2 queries to
find each block of secrets s̄i[j], s̄i[j+1], ..., s̄i[j+t−1] of blocksize t. The total
number of queries will be: ⌈nt ⌉×3×2. For Saber this number will be ⌈nt ⌉×3×3.

16 P. Mondal et al.

Table 2: For Kyber768
u=38,v=14

S d0=12 d1=4 d2=13 d4=3

-2 0 1 0 1
-1 0 1 0 0
0 0 0 0 0
1 1 0 0 0
2 1 0 1 0

Table 3: For Saber
S u=0x3c8 u=7

d0 d2 d5 d6 d1 d3 d4 d7
=4 =2 =3 =1 =6 =7 =5 =12

-4 0 0 0 0 0 0 0 0
-3 0 0 0 0 0 1 0 0
-2 0 0 0 0 1 1 0 0
-1 0 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1 0
1 1 0 1 0 1 1 1 0
2 1 1 1 0 1 1 1 0
3 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1

2. Average case: In the case of Kyber768, if E1 is the expected number of the secret
coefficients of each polynomial that lie in the set S4, the total number of queries
will be: 3×((⌈nt ⌉×2)+⌈

E1

t)⌉). Similarly, for Saber, if E1 is the expected number
of the secret coefficient of each polynomial that lies in S7, then the total number
of queries will be: 3×((⌈nt ⌉×3)+⌈

E1

t ⌉).

3.4 Comparing our attack with the state-of-the-art

In this section, we compare the total number of ciphertexts required to retrieve the
whole secret key for the average case in Kyber768 and Saber with our attack and the
work by Rajendran et al. [47], which also proposed methods to reduce the number
of ciphertexts using parallel plaintext checking oracle model. Even though we need to
use the same number of ciphertext as [47] to recover the whole secret key when the
parallelization factor t=1, our attack model requires less number of ciphertexts than
[47] to recover the whole secret key in the average case when the parallelization factor
t>1. If t=10 or 12 or 16, for Kyber768 we use approximately 22% less number of
ciphertext than [47]. Also, in Saber, if we take t=10, we require ≈39% less number of
ciphertext than the paper [47] to recover the key. However, we require 57 number of
ciphertext to recover the whole secret key of Kyber768 in the average case when the
parallelization factor t=32. We observe that increasing the parallelization factor t will
reduce the number of required ciphertexts. However, in this case, the process of finding
the decrypted message from the shared key (offline calculation) will be more costly
(takes 2t comparison). For this reason, we take the value of the parallelization factor
t up to 32. But, with a more powerful computer that can do 240 comparison, then we
can take the parallelization factor t=40. In this case, the number of queries will be 48.

Frequency of fault induction in the attack for Kyber768: We have discussed
earlier that to recover the whole secret of the algorithm Kyber768, we require 57
faulted shared keys i.e., 57 many times, we often have to introduce the bit-flip faults
at the location of the variable "fail".

Rowhammer on Lattice-base KEMs 17

Table 4: Number of queries required to recover the key for Kyber768 and Saber in total

Scheme Parallelization factor t
1 10 12 16 32 40

Kyber768
This work
3×((⌈256

t
⌉×2)+⌈80

t
)⌉) 1776 180 153 111 57 48

Rajendran et al. [47] 1776 232 197 144 72 63

Saber
This work
3×((⌈256

t
⌉×3)+⌈9

t
)⌉) 2331 237 201 147 75 66

Rajendran et al. [47] − 390 − − − −

4 Realization of the fault model

In this section, we are going to illustrate an end-to-end strategy to demonstrate the
fault model in practice.

4.1 Nature of the fault in the attack

In the previous sections, we discuss that our objective is to obtain the output
F(K′, H(ct)) by exploiting a fault, where K′ is derived from the decrypted message
m of the ciphertext ct. This fault uses the plaintext checking oracleOµ. To achieve this,
it is crucial to neutralize the effectiveness of comparing two ciphertexts, denoted as c
and ct, in terms of equality checking. For all security levels of Saber and Kyber, the
design employs a verify function that takes two ciphertexts, c and ct, along with their
lengths and returns 0 if they are equal or 1 otherwise. The result is stored in a variable
called "fail". In our attack, we construct ciphertexts in a particular pattern, ensuring
that the ciphertexts c and ct are highly likely to be unequal. As a result, the variable
"fail" will always be set to 1. This allows us to perform a bit-flip or get stuck at zero
at the location of the "fail" variable, thus obtaining our desired output F(K′, H(ct)).
If we observe that for our constructed ciphertext ct, the value of the shared key is
different from F(z, H(ct)). At this time, we are ensured that the value of the "fail"
variable has changed to 0, and this value is our essential shared key F(K′, H(ct)).

A stuck-at-zero fault is where a signal or a specific bit within a circuit is constantly
held at logic zero. This fault can occur due to manufacturing defects, electrical shorts,
environmental factors, or other physical issues. In contrast, a bit-flips fault involves
the unintentional change of a single bit within a circuit or memory location from its
intended value to the opposite value. Both stuck-at-zero and bit-flip faults can have
various causes and implications. It is important to note that the specific type and cause
of these faults can vary depending on the context, such as the hardware or software
implementation, the cryptographic scheme used, and the fault injection techniques
employed. Stuck-at-zero and bit-flip faults can lead to unexpected behaviour, data
corruption, security vulnerabilities, or system crashes. To ensure system reliability
and data integrity, detecting and mitigating these faults often involves employing
error detection and correction techniques, such as error-correcting codes, redundant
storage methods, or fault-tolerant designs.

18 P. Mondal et al.

Model name RAM size
1. Intel (R) Core (TM) i7-4770 CPU 4 GB
2. Intel (R) Core (TM) i7-3770 CPU 8 GB
3. Intel (R) Core (TM) i5-3330 CPU 4 GB
Table 5: Model details of our target devices

In this paper, we choose Dynamic Random Access Memory (DRAM) reliability
issue Rowhammer to introduce a software-driven hardware fault attack to induce a bit-
flip (1→0) at the address of the "fail" variables. We also present a series of steps that
could be followed to incorporate this fault at a precise location in realistic timeframes.

4.2 Our target devices

To demonstrate our attack, we employ a deliberate technique of inducing bit-flips
during the decapsulation process of Kyber. In our model, the attacker is assumed to be
colocated in the same server as the victim, which performs the decapsulation process
of Kyber and Saber. This scenario can also be extended to multiple virtual machines
operating on a shared server. In this model, the primary assumption is that the victim
and the attacker are co-located on the same physical piece of memory hardware,
typically a DRAM and the vulnerable locations are neighbors to each other. This
model exists in the current research field of row hammer [16,23] and is also consistent
with most microarchitectural attacks [17]. Furthermore, since Kyber and Saber are
designed as a CCA-secure scheme, our attack assumes that the attacker can often
query the decapsulation process with the constructed ciphertext. We demonstrate
our attack against the machines listed in Table 5.

4.3 Probabilities of incorporating precise fault using random Rowhammer

The task of incorporating bit-flips in random locations in memory is common and is
very well studied in literature after Rowhammer has been reported in practice, but the
hard part is to precisely induce the faults in the location of one’s choice. In this paper,
considering the target example, if we run the target code of Kyber/Saber multiple
times in one process and an unsupervised row hammer code in another process, the
address of the variable "fail" coinciding with one of the vulnerable locations, the
probability of such event occurrence is considerably low. Suppose there are a total
N number of vulnerable locations after hammering randomly among N1 locations
present on a device. Then, the possibility of the variable "fail" being vulnerable =
Pr(the location of "fail"=X) × Pr("fail" coincide in a vulnerable location |the
location of "fail"=X) = 1

N1
× N

N1
= N

N2
1
, which is very low as N1≫N . In our system,

we randomly access N1 =230 bytes of memory; we discovered N < 10 vulnerable
locations by accessing the memory randomly. Notably, the number of vulnerable
locations (N) is considerably smaller than the total memory access. In order to make
this process deterministic, we follow the steps described below.

Rowhammer on Lattice-base KEMs 19

Time interval (50s)

Fr
eq

ue
nc

y

0

10

20

30

40

0.0
0

50
.00

10
0.0

0

15
0.0

0

20
0.0

0

25
0.0

0

30
0.0

0

35
0.0

0

40
0.0

0

45
0.0

0

50
0.0

0

55
0.0

0

60
0.0

0

65
0.0

0

Fig. 5: Frequency of bit-flips in every 50 second

Using the deterministic process of Rowhammer: We have used the hammertime
code4 available at [57] to execute row hammering operations. Through our exploration,
we have observed that hammertime is a valuable simulator, offering a convenient
approach to deterministically evaluate vulnerable locations. This versatile tool is
purpose-built for testing, profiling, and simulating the Rowhammer DRAM attack,
providing a comprehensive suite of capabilities for assessing the outcomes of exploits.

The provided code presents two types of row hammering techniques: single-sided
row hammering and double-sided row hammering. We have employed the single-sided
row hammering process outlined in their code for our implementation. In each iteration
of this approach, our target is to find the vulnerable rows from an aggressive row’s
upper or lower rows. Also, in our victim machine, the bit-flip occurs considerably fre-
quently. Figure 5 shows the bit-flip frequency in every 50 second. In the hammertime
code, we observe that this code deterministically selects an aggressive row, then fills
up the memory with values all 1’s ("0xff") in the aggressive row and its neighbouring
rows, and repeatedly flushes the corresponding portions of cache memory allocation.
Iteratively, it only accesses the addresses with offsets A={ai}i, where a0=0 and
ai+1−ai=0x020, for all i to check the bit-flip result. So, we can get the vulnerable ad-
dress with the offset lie in A by running the hammering code. Figure 6 shows the offsets
of the bitflip addresses and their frequency observed in our experiments. We perform a
first-level templating of main memory using the hammertime code as shown in Figure 6,
identifying locations that are vulnerable to Rowhammer. This templating step also aids
us in identifying trigger rows so that we can replicate Rowhammer deterministically
by re-accessing those aggressor rows again over time. By using the hammering code,
we get the vulnerable addresses having different offsets and construct the set A. In
this particular attack algorithm, we want the adversary to induce a bit-flip to a known
vulnerable location. In order to achieve that, the variable in the decapsulation process
(target "fail" variable) must coincide with atleast one offset in the set A of vulnerable
addresses in order to precisely induce the fault. In order to increase the reproducibility
4 "https://github.com/vusec/hammertime.git"

"https://github.com/vusec/hammertime.git"

20 P. Mondal et al.

The offset list

Th
e

fre
qu

en
cy

0

5

10

15

0x
00

0
0x

08
0

0x
10

0
0x

18
0

0x
20

0
0x

38
0

0x
30

0
0x

38
0

0x
40

0
0x

48
0

0x
50

0
0x

58
0

0x
60

0
0x

68
0

0x
70

0
0x

78
0

0x
80

0
0x

88
0

0x
90

0
0x

98
0

0x
a0

0
0x

a8
0

0x
b0

0
0x

b8
0

0x
c0

0
0x

c8
0

0x
d0

0
0x

d8
0

0x
e0

0
0x

e8
0

Fig. 6: Frequency of the bit-flips in the corresponding offset.

of the attack over multiple runs, we have assigned the datatype of the variable "fail" in
our implementation to "static int" rather than simply using "int". Doing so guarantees
that the offset of the "fail" variable remains unchanged throughout the execution.
Without loss of generality, if our attack methodology is implemented on any other
target secret, then a similar technique could be applied to any global variable or a local
variable with a static flag for the sake of the reproducibility of our attack. We consider
the offset 0x040 of the "fail" variable, which was observed on our executable. This offset
can be any value without loss of generality in Kyber/ Saber’s implementation, and the
appropriate matching offset of the Rowhammer fault can also be selected from the tem-
plating phase. In our attack scenario, we select the vulnerable locations offset of 0x040
to show the vulnerability. We construct the following template shown in Figure 7.

The templating method in Rowhammer provides a method that induces a bit-flip
from 1 to 0 at the "fail" variable. First, we run the hammertime code and observe
a bit-flip (1→0) at an address with the offset 0x040. In this phase, we proceed to
unmap the corresponding page of that address and emit a signal, enabling us to
execute the victim code in process 2. With a high likelihood, the victim code gets
mapped to the unmapped page just being freed by the hammertime executable. This

Process 1 Process 2

1. Run the "hammertime code"
until we get the bit-flip (1→0)
at the location A
2. Unmap the page of A

3.Run the decapsulation
code of Kyber/Saber4. Run the "hammertime code"

for the same location A

Fig. 7: Template of generating oracle Oµ using Rowhammer

Rowhammer on Lattice-base KEMs 21

will allow the "fail" variable to be sitting in the Rowhammer vulnerable location
of the unmapped page. The scenario of page reallocation of the recently unmapped
page is commonly encountered using the Page Frame Cache during page allocations
involving the buddy allocator [16].

After successfully aligning the "fail" variable with the vulnerable location of
Rowhammer, our objective is to actually induce the fault in the target location to
change its value to "0". To accomplish this, we need to continue performing row ham-
mering on the same aggressive row that inflicted the Rowhammer in the templating
phase. This ensures that the bit-flip occurs at the same vulnerable address, which
is now unmapped from the hammering code, but possessed by the target executable
of the victim. To achieve this, we made some modifications to the hammertime tool,
and iterated through the following processes.

An extra loop is added inside the profile_singlesided function. Once the target page
is unmapped, only then this loop will run. The loop contains minor modifications to the
following functions fill_rows and c->hamfunc. This modification involves a checking
condition that inside the function fill_rows, we ignore the addresses lying on the
unmapped page. This function activates aggressive rows and neighbor rows and as a
result, the vulnerable address is affected, leading to a change in its bit from "1" to "0".

After unmapping the page, we run the victim code (decapsulation process with our
constructed ciphertext) parallel to the hammertime code until we observe the faulty
shared key. If we observe a different shared key, then the Rowhammer attempt has
been successful and we stop this process. We summarize the whole process as follows:

1. By running the hammering code, vulnerable addresses with offsets from set
A are identified, and the "fail" variable is positioned to coincide with one of
these vulnerable addresses. A suitable vulnerable location is selected and the
corresponding page is unmapped from the code.

2. After unmapping the page, we run the victim code until we do not get the faulty
shared key. If we get a different shared key, then we are done.

3. To achieve a bit-flip from "1" to "0" at the "fail" variable, row hammering is
continued on the same aggressive row, modifying the fill_row function to fill
memory with "0xff" and performing a memory flush on all addresses except the
unmapped page corresponding to the vulnerable address.

Figure 8 illustrates the distribution of timings observed for the Rowhammer
bit-flip to occur at the vulnerable location through the hammertime code after
unmapping the vulnerable page. In order to estimate the total time to recover the
whole secret key we need 57 independent queries to the oracle. This translates to
57 independent fault occurrences on the "fail" variable in the implementation of the
decapsulation algorithm. One such occurrence can be estimated to happen in <350ms
with a significantly high probability. So this attack can be realised using an additive
progression of timing on respective queries and can be observed in a linear timescale.

5 Discussion and future direction

In this paper, we show an end-to-end software-driven hardware fault on PQ LWE-based
KEMs. We choose Saber and Kyber key encapsulation schemes and perform the fault

22 P. Mondal et al.

Time of getting re-bitflip (10 ms)

Fr
eq

ue
nc

y

0

20

40

60

80

15
0.0

0

16
0.0

0

17
0.0

0

18
0.0

0

19
0.0

0

20
0.0

0

21
0.0

0

22
0.0

0

23
0.0

0

24
0.0

0

25
0.0

0

26
0.0

0

27
0.0

0

28
0.0

0

29
0.0

0

30
0.0

0

31
0.0

0

32
0.0

0

33
0.0

0

34
0.0

0

35
0.0

0

Fig. 8: The value of an interval [a,b] is the number of bit-flips which takes the time
t∈ [a,b], to make re-bitflip at the same address

analysis with as much as 39% reduced number of queries for Saber and approximately
23% for Kyber768 on the existing literature. This was achieved by pruning selected
leaves of the decisional binary search tree used in the attack. The fault induction using
the Rowhammer has been known in the literature to appear in random locations
of memory due to the reliability issues of commercial DDR RAMs. We follow some
precise steps by first templating the memory space, listing out vulnerable addresses of a
system, and then precisely locating the target KEM implementation in that vulnerable
location. In this context, we use publicly available Hammertime code to template the
memory space, then make minor modifications to re-induce Rowhammer using the
selected aggressor rows on that same location deterministically. This semi-deterministic
process is highly useful in conjunction with the paging policies of the Buddy allocator,
and then inflicting these bit-flips on the publicly available target implementation.

Though there has been recent work on Frodo KEM [23], where the authors incor-
porate fault in the key generation phase using Rowhammer. As discussed in Section 3,
the key generation of a CCA-secure KEM is a one-time operation and is invoked
rarely. Hence, if necessary the key generation can even be done offline in an isolated
environment. On the other hand, the decapsulation of a CCA-secure KEM is invoked
multiple times to generate the shared secret key from multiple sources. Therefore, in
a practical scenario for the sake of performance, the decapsulation cannot run in an
isolated environment. Therefore the attack described in [23] is far less realistic than
our attack methodology. Further, the authors assume that they can slow down the
execution by slowing down components of the target executable. This is already a
strong assumption. Additionally, the authors have disabled ASLR (Address Space
Layout Randomization) for their experiments which makes the assumptions even
stronger and the attack more unrealistic.

Rowhammer on Lattice-base KEMs 23

5.1 Shuffling and Masking:

Previous attacks [56,47] based on parallel plaintext checking oracle have used side-
channel analysis such as EM power analysis. So, these attacks can be prevented
using masking countermeasures [48]. Our attack can be conducted on the masked or
shuffled implementation of the LWE-based KEMs. Because here, we do not use any
side-channel assistance to perform the attack. We induce a bitflip fault to the "fail"
variable, which stores the result of the comparison between the public ciphertext and
the re-encrypted ciphertext. As a result of this fault, the value of the "fail" variable
always remains 0, and that causes decapsulation success. When applying side-channel
countermeasures such as masking and shuffling on the decapsulation algorithm of
LWE-based KEMs [15,58,35], this fail variable remains unaffected and unmasked,
since it is not dependent on the secret. Therefore, the success of our attack does not
get affected by generic side-channel countermeasures such as masking or shuffling.

5.2 Extension of our attack on other PQC schemes:

The parallel plaintext checking oracle used in our attack model can be applicable to
any LWE-based KEMs. It is not specific to Saber and Kyber. It can be applicable to
other LWE-based schemes such as NewHope [3], Lizard citeCheonKLS18, Round5 [9],
Frodo [13], Smaug [18](proposed in the ongoing Korean PQC [34] competition), etc.
The Rowhammer methodology we propose in this work to introduce fault can also
be applicable to other fault attack models where a single or multi-bit fault is required.
Popular side-channel countermeasures such as masking and shuffling are ineffective
to protect against this attack.

5.3 Combining of lattice reduction techniques with our attack:

There can be some cases when the attacker only has a limited number of accesses to the
decapsulation procedure. Then, the attacker can use our attack to recover some of the
coefficients of the secret key and then use lattice reduction techniques to recover the
rest of the secret key [28]. The LWE-estimator toolbox [2,19] can provide an estimate
on the computation effort required to recover the secrets using the lattice reduction
techniques. It is up to the attacker to determine the optimum point till when our
attack should be stopped and the lattice reduction methods should be used. However,
more investigation is needed to combine our attack results with these LWE-estimators
to efficiently recover the secret key. We would like to investigate it in the future.

5.4 Possible countermeasures

Although masking or shuffling countermeasures are unable to prevent our attack,
there are a few countermeasures that can be useful to thwart our attack. Below, we
list these countermeasures in two categories.

– Fault attack countermeasure on the LWE-based schemes: Recently, Berthet et
al. [11] propose a countermeasure named quasi-linear masking on Kyber to prevent
fault injection attacks together with side-channel attacks. This countermeasure
might be used to prevent our attack.

24 P. Mondal et al.

– Rowhammer Countermeasures: There have been various countermeasures of
RowHammer attacks proposed in the literature. The authors in the paper [33]
proposed Probabilistic Adjacent Row Activation (PARA), where the memory
controller is designed to refresh its adjacent rows with probability p (typically
1/2). The memory controller being probabilistic, the approach does not require
a complex data structure for counting the number of row activations. Earlier
in [53], it was shown that doubling the refresh rate and removing access to clflush
instruction are potential prevention techniques to RowHammer. An interesting
countermeasure to rowhammer has been proposed in Anvil [8]. If the cache misses
over a time interval is observed to be significantly high, then the software module
triggers sampling of the DRAM accesses. ANVIL selectively performs a row refresh
if the software module detects repeated accesses to particular rows in the same
bank. Another process, Target Row Refresh (TRR), believed to be a definitive
solution, can prevent RowHammer bit flips [39] [1]. However, in the paper [26], the
authors also find that consumer CPUs rely on in-DRAM TRR and are vulnerable
to many-sided RowHammer attacks. They introduce TRRespass, which can
autonomously discover intricate hammering patterns to launch real-world attacks
on numerous DDR4 DRAM modules available in the market. Till now, there is
no concrete solution that can prevent the RowHammer bit flip problem. [1] J.-B.
Lee, “Green Memory Solution,” in Samsung Electronics, Investor’s Forum, 2014.

Acknowledgements

This work was supported in part by Horizon 2020 ERC Advanced Grant (101020005
Belfort), CyberSecurity Research Flanders with reference number VR20192203, BE
QCI: Belgian-QCI (3E230370) (see beqci.eu), and Intel Corporation.

Angshuman Karmakar is funded by FWO (Research Foundation – Flanders) as
a junior post-doctoral fellow (contract number 203056 / 1241722N LV). Puja Mondal
and Angshuman Karmakar are also supported by C3iHub, IIT Kanpur.

References

1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger,
J., Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A.,
Smith-Tone, D.: Status Report on the Third Round of the NIST Post-Quantum
Cryptography Standardization Process. Online. Accessed 26th June, 2023 (2022),
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learn-
ing with Errors. Cryptology ePrint Archive, Report 2015/046 (2015),
https://eprint.iacr.org/2015/046

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange
- A New Hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016. pp. 327–343. USENIX
Association (2016), https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://eprint.iacr.org/2015/046
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim

Rowhammer on Lattice-base KEMs 25

4. Aranha, D.F., Fouque, P.A., Gérard, B., Kammerer, J.G., Tibouchi, M., Zapalowicz,
J.C.: GLV/GLS Decomposition, Power Analysis, and Attacks on ECDSA Signatures
with Single-Bit Nonce Bias. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology
– ASIACRYPT 2014. pp. 262–281. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

5. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
Breaking ECDSA with Less than One Bit of Nonce Leakage. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. p. 225–242.
CCS ’20, Association for Computing Machinery, New York, NY, USA (2020). https:
//doi.org/10.1145/3372297.3417268, https://doi.org/10.1145/3372297.3417268

6. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M., Fluhrer,
S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M.,
Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Westerbaan,
B.: SPHINCS+: Stateless hash-based signatures, https://sphincs.org/, [Online;
accessed 28-June-2023]

7. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault Attacks on RSA
with CRT: Concrete Results and Practical Countermeasures. In: Kaliski, B.S., Koç,
ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
pp. 260–275. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

8. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin, T.: ANVIL:
Software-based protection against next-generation rowhammer attacks. ACM SIGPLAN
Notices 51(4), 743–755 (2016)

9. Baan, H., Bhattacharya, S., Fluhrer, S.R., García-Morchón, Ó., Laarhoven, T.,
Rietman, R., Saarinen, M.O., Tolhuizen, L., Zhang, Z.: Round5: Compact and Fast
Post-quantum Public-Key Encryption. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019, Chongqing, China,
May 8-10, 2019 Revised Selected Papers. Lecture Notes in Computer Science, vol.
11505, pp. 83–102. Springer (2019). https://doi.org/10.1007/978-3-030-25510-7_5,
https://doi.org/10.1007/978-3-030-25510-7_5

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7237, pp. 719–737. Springer (2012). https://doi.org/10.1007/
978-3-642-29011-4_42, https://doi.org/10.1007/978-3-642-29011-4_42

11. Berthet, P., Tavernier, C., Danger, J., Sauvage, L.: Quasi-linear Masking to Protect
Kyber against both SCA and FIA. IACR Cryptol. ePrint Arch. p. 1220 (2023),
https://eprint.iacr.org/2023/1220

12. Biehl, I., Meyer, B., Müller, V.: Differential Fault Attacks on Elliptic Curve Cryptosys-
tems. In: Bellare, M. (ed.) Advances in Cryptology — CRYPTO 2000. pp. 131–146.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

13. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan,
A., Stebila, D.: Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from
LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. pp. 1006–1018. ACM (2016). https:
//doi.org/10.1145/2976749.2978425, https://doi.org/10.1145/2976749.2978425

14. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe,
P., Stehlé, D.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM (2017),
http://eprint.iacr.org/2017/634

https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://sphincs.org/
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://eprint.iacr.org/2023/1220
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
http://eprint.iacr.org/2017/634

26 P. Mondal et al.

15. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking Kyber:
First- and Higher-Order Implementations. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.173-214,
https://doi.org/10.46586/tches.v2021.i4.173-214

16. Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopadhyay, D.: ExplFrame: Exploiting
Page Frame Cache for Fault Analysis of Block Ciphers. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March
9-13, 2020. pp. 1303–1306. IEEE (2020). https://doi.org/10.23919/DATE48585.2020.
9116219, https://doi.org/10.23919/DATE48585.2020.9116219

17. Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopdhyay, D.: Rowham-
mer Induced Intermittent Fault Attack on ECC-hardened memory (2020),
https://eprint.iacr.org/2020/380

18. Cheon, J.H., Choe, H., Hong, D., Yi, M.: SMAUG: Pushing Lattice-based Key
Encapsulation Mechanisms to the Limits. Cryptology ePrint Archive, Paper 2023/739
(2023), https://eprint.iacr.org/2023/739, https://eprint.iacr.org/2023/739

19. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with Side Information:
Attacks and Concrete Security Estimation. Cryptology ePrint Archive, Report 2020/292
(2020), https://eprint.iacr.org/2020/292

20. Daemen, J., Rijmen, V.: Rijndael for AES. In: The Third Advanced Encryption
Standard Candidate Conference, April 13-14, 2000, New York, New York, USA. pp.
343–348. National Institute of Standards and Technology, (2000)

21. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM (2018),
http://eprint.iacr.org/2018/230

22. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS - Dilithium: Digital Signatures from Module Lattices (2017),
http://eprint.iacr.org/2017/633

23. Fahr, M., Kippen, H., Kwong, A., Dang, T., Lichtinger, J., Dachman-Soled, D.,
Genkin, D., Nelson, A., Perlner, R., Yerukhimovich, A., Apon, D.: When frodo flips:
End-to-end key recovery on frodokem via rowhammer. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. p. 979–993.
CCS ’22, Association for Computing Machinery, New York, NY, USA (2022). https:
//doi.org/10.1145/3548606.3560673, https://doi.org/10.1145/3548606.3560673

24. Fan, H., Wang, W., Wang, Y.: Cache attack on MISTY1. IACR Cryptol. ePrint Arch.
p. 723 (2021), https://eprint.iacr.org/2021/723

25. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU (2018), https://falcon-sign.info/falcon.pdf,
[Online; accessed 28-June-2023]

26. Frigo, P., Vannacci, E., Hassan, H., van der Veen, V., Mutlu, O., Giuffrida, C., Bos,
H., Razavi, K.: TRRespass: Exploiting the Many Sides of Target Row Refresh. In: 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-
21, 2020. pp. 747–762. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00090,
https://doi.org/10.1109/SP40000.2020.00090

27. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric
Encryption Schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/
s00145-011-9114-1, https://doi.org/10.1007/s00145-011-9114-1

28. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,

https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.23919/DATE48585.2020.9116219
https://doi.org/10.23919/DATE48585.2020.9116219
https://doi.org/10.23919/DATE48585.2020.9116219
https://doi.org/10.23919/DATE48585.2020.9116219
https://doi.org/10.23919/DATE48585.2020.9116219
https://eprint.iacr.org/2020/380
https://eprint.iacr.org/2023/739
https://eprint.iacr.org/2023/739
https://eprint.iacr.org/2020/292
http://eprint.iacr.org/2018/230
http://eprint.iacr.org/2017/633
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://eprint.iacr.org/2021/723
https://falcon-sign.info/falcon.pdf
https://doi.org/10.1109/SP40000.2020.00090
https://doi.org/10.1109/SP40000.2020.00090
https://doi.org/10.1109/SP40000.2020.00090
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1

Rowhammer on Lattice-base KEMs 27

April 13-17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4965,
pp. 31–51. Springer (2008). https://doi.org/10.1007/978-3-540-78967-3_3,
https://doi.org/10.1007/978-3-540-78967-3_3

29. Guo, Q., Johansson, T., Nilsson, A.: A Key-Recovery Timing Attack on Post-quantum
Primitives Using the Fujisaki-Okamoto Transformation and Its Application on
FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12171, pp. 359–386. Springer (2020).
https://doi.org/10.1007/978-3-030-56880-1_13

30. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-Enabled Chosen-Ciphertext Attacks
on Kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) Progress in Cryptology - IN-
DOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur, India,
December 12-15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13143,
pp. 311–334. Springer (2021). https://doi.org/10.1007/978-3-030-92518-5_15

31. Islam, S., Mus, K., Singh, R., Schaumont, P., Sunar, B.: Signature Correction
Attack on Dilithium Signature Scheme. In: 7th IEEE European Symposium
on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. pp.
647–663. IEEE (2022). https://doi.org/10.1109/EuroSP53844.2022.00046,
https://doi.org/10.1109/EuroSP53844.2022.00046

32. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without Additional Hash. Cryptology ePrint Archive, Report 2017/1096 (2017),
https://eprint.iacr.org/2017/1096

33. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K., Mutlu,
O.: Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors. ACM SIGARCH Computer Architecture News 42(3), 361–372 (2014)

34. KpqC: Korean post-quantum cryptography competition (2022), https:
//www.kpqc.or.kr/competition.html, [Online; accessed 28-June-2023]

35. Kundu, S., D’Anvers, J., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.:
Higher-Order Masked Saber. In: Galdi, C., Jarecki, S. (eds.) Security and Cryp-
tography for Networks - 13th International Conference, SCN 2022, Amalfi, Italy,
September 12-14, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13409,
pp. 93–116. Springer (2022). https://doi.org/10.1007/978-3-031-14791-3_5,
https://doi.org/10.1007/978-3-031-14791-3_5

36. Kwong, A., Genkin, D., Gruss, D., Yarom, Y.: Rambleed: Reading bits in memory
without accessing them (05 2020). https://doi.org/10.1109/SP40000.2020.00020

37. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/
s10623-014-9938-4, https://doi.org/10.1007/s10623-014-9938-4

38. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors
over Rings. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 6110, pp. 1–23. Springer (2010). https://doi.org/
10.1007/978-3-642-13190-5_1, https://doi.org/10.1007/978-3-642-13190-5_1

39. Micron: DDR4 SDRAM Datasheet (2016)
40. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) Advances

in Cryptology — CRYPTO ’85 Proceedings. pp. 417–426. Springer Berlin Heidelberg,
Berlin, Heidelberg (1986)

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://eprint.iacr.org/2017/1096
https://www.kpqc.or.kr/competition.html
https://www.kpqc.or.kr/competition.html
https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1

28 P. Mondal et al.

41. Mujdei, C., Beckers, A., Bermundo, J., Karmakar, A., Wouters, L., Verbauwhede,
I.: Side-Channel Analysis of Lattice-Based Post-Quantum Cryptography: Ex-
ploiting Polynomial Multiplication. IACR Cryptol. ePrint Arch. p. 474 (2022),
https://eprint.iacr.org/2022/474

42. Mus, K., Islam, S., Sunar, B.: QuantumHammer: A Practical Hybrid Attack on the
LUOV Signature Scheme. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security. p. 1071–1084. CCS ’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417272,
https://doi.org/10.1145/3372297.3417272

43. Mutlu, O., Kim, J.S.: RowHammer: A Retrospective. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 39(8), 1555–1571 (2020). https://doi.org/10.1109/TCAD.
2019.2915318, https://doi.org/10.1109/TCAD.2019.2915318

44. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of AES. In: Topics in Cryptology–CT-RSA 2006: The Cryptographers’ Track at the
RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005. Proceedings. pp.
1–20. Springer (2006)

45. Pessl, P., Prokop, L.: Fault Attacks on CCA-secure Lattice KEMs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(2), 37–60 (2021). https://doi.org/10.46586/
tches.v2021.i2.37-60, https://doi.org/10.46586/tches.v2021.i2.37-60

46. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003). https://doi.org/10.26421/QIC3.4-3,
https://doi.org/10.26421/QIC3.4-3

47. Rajendran, G., Ravi, P., D’Anvers, J., Bhasin, S., Chattopadhyay, A.: Pushing the
Limits of Generic Side-Channel Attacks on LWE-based KEMs - Parallel PC Oracle
Attacks on Kyber KEM and Beyond. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2023(2), 418–446 (2023). https://doi.org/10.46586/tches.v2023.i2.418-446,
https://doi.org/10.46586/tches.v2023.i2.418-446

48. Ravi, P., Chattopadhyay, A., Baksi, A.: Side-channel and Fault-injection attacks over
Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New Results.
IACR Cryptol. ePrint Arch. p. 737 (2022), https://eprint.iacr.org/2022/737

49. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic Side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(3), 307–335 (2020), https://doi.org/10.13154/tches.v2020.i3.307-335

50. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng Shui:
Hammering a Needle in the Software Stack. In: Proceedings of the 25th USENIX
Conference on Security Symposium. p. 1–18. SEC’16, USENIX Association, USA (2016)

51. Regev, O.: Lecture notes: Lattices in computer science, https://cims.nyu.edu/
~regev/teaching/lattices_fall_2009

52. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM 21(2), 120–126 (1978). https:
//doi.org/10.1145/359340.359342, http://doi.acm.org/10.1145/359340.359342

53. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. Black Hat 15, 71 (2015)

54. Settana, M., Naila, A., Yaseen, H., Huwaida, T.: Cache-Timing Attack
against AES Crypto-Systems Countermeasure Using Weighted Average Mask-
ing Time Algorithm. Journal of Information Warfare 15(1), 104–114 (2016),
https://www.jstor.org/stable/26487484

55. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring.
In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mex-
ico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society (1994). https://
doi.org/10.1109/SFCS.1994.365700, https://doi.org/10.1109/SFCS.1994.365700

https://eprint.iacr.org/2022/474
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/tches.v2023.i2.418-446
https://eprint.iacr.org/2022/737
https://doi.org/10.13154/tches.v2020.i3.307-335
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://www.jstor.org/stable/26487484
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

Rowhammer on Lattice-base KEMs 29

56. Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-
Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs (2022),
https://eprint.iacr.org/2022/940

57. Tatar, A., Giuffrida, C., Bos, H., Razavi, K.: Defeating Software Mitigations
Against Rowhammer: A Surgical Precision Hammer. In: Bailey, M., Holz, T.,
Stamatogiannakis, M., Ioannidis, S. (eds.) Research in Attacks, Intrusions, and
Defenses - 21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings. Lecture Notes in Computer Science, vol.
11050, pp. 47–66. Springer (2018). https://doi.org/10.1007/978-3-030-00470-5_3,
https://doi.org/10.1007/978-3-030-00470-5_3

58. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.: Shuffling against
side-channel attacks: A comprehensive study with cautionary note. In: Wang, X., Sako,
K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp.
740–757. Springer (2012). https://doi.org/10.1007/978-3-642-34961-4_44

59. Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, R.: One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation. In: Holz, T., Savage, S.
(eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016. pp. 19–35. USENIX Association (2016), https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/xiao

60. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014. pp. 719–732. USENIX
Association (2014), https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

Supplementary material

A Rowhammer

Rowhammer is a phenomenon observed in dynamic random-access memory (DRAM)
where repeated access to a specific row can result in bit flips occurring in neighboring
rows [43]. This happens because the capacitors in neighboring rows, responsible for
storing bit values, discharge slightly due to parasitic currents when the row’s word
line is activated if this discharge happens frequently enough to lower the voltage below
the "charged" threshold before the regular DRAM refresh, which typically occurs
every 64ms, the logical value of the bit can flip. There are two types of methods for
row hammering: single-sided rowhammering and double-sided rowhammering.
Single-sided Rowhammering: Single-sided rowhammering is a technique where
an attacker repeatedly accesses memory rows on only one side of a target row without
accessing the rows above or below within the same bank. By rapidly accessing specific
rows, the attacker aims to induce electrical interference and disturb neighboring cells,
potentially causing bit flips and altering data stored in adjacent rows. This technique
relies on the inherent electrical interactions between closely located memory cells,
taking advantage of the sensitivity of DRAM cells to repeated accesses.
Double-sided Rowhammering: Double-sided rowhammering is a more aggressive
variant of the rowhammering technique. In this approach, an attacker repeatedly

https://eprint.iacr.org/2022/940
https://doi.org/10.1007/978-3-030-00470-5_3
https://doi.org/10.1007/978-3-030-00470-5_3
https://doi.org/10.1007/978-3-030-00470-5_3
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

30 P. Mondal et al.

accesses memory rows above and below a target row within the same bank. By
accessing these rows simultaneously, the attacker intensifies the electrical interactions
and disturbances within the DRAM cells. This increases the likelihood of inducing bit
flips in the target and adjacent rows. Double-sided row hammer leverages the interplay
of electrical charges in closely positioned memory cells to exploit the vulnerability
of DRAM and manipulate data stored in memory.

B Fujisaki-Okamoto (FO) transformation

We use this FO transformation proposed by [32] to construct a CCA secure key-
encapsulation mechanism (KEM) over the CPA secure LPR.PKE scheme. The al-
gorithms of this KEM are shown in Figure 2. The KEM algorithm contains three
algorithms: (i) key generation (KEM.KeyGen), (ii) encapsulation (KEM.Encaps), and
(iii) decapsulation (KEM.Decaps). The algorithm KEM.KeyGen produces a public key
pk and a secret key sk′ by employing the LPR.PKE.KeyGen algorithm. In this context,
sk refers to the secret key generated through the LPR.PKE.KeyGen algorithm, z is a
random bit string of length n, andH is a hash function. The secret key sk′ is computed
by concatenating sk, pk, H(pk), and z. The KEM.Encaps algorithm takes the public
key pk as input and generates a random message bit string m of length n. Then it uses
the hash function G to compute K′ and a random coin string r. After that, it encrypts
the message m using the LPR.PKE.Enc algorithm with public key pk, message m,
and random coin string r to produce the ciphertext ct. Finally, it applies a function F
to K′ and the ciphertext ct to produce the shared key K. The KEM.Decaps algorithm
takes the ciphertext ct and secret key sk′ as inputs. It first decrypts the ciphertext
using the LPR.PKE.Dec algorithm with secret key sk and ciphertext ct to produce the
decrypted message m′. It then re-encrypts the message m′ using the LPR.PKE.Enc
algorithm with public key pk and random coin string r to produce the ciphertext
c. It then checks whether ct and c are equal. If they are, it applies the function F
to K′ and the hash of the ciphertext H(ct) to produce the shared key K. Otherwise,
it applies the function F to the random bit string z and the hash of the ciphertext
H(ct) to produce an invalid shared key K. Finally, it returns the shared key K.

	A practical key-recovery attack on LWE-based key-encapsulation mechanism schemes using Rowhammer

