Abstract
HALFLOOP-48 is a 48-bit tweakable block cipher used in high frequency radio to protect automatic link establishment messages. We concentrate on its differential properties. Using the automatic method, we determine the lower bound for the number of active S-boxes and the upper bound for the differential probability for the conventional, related-tweak, and related-key differential attack settings. The newly identified 6-round related-tweak differential is utilised to initiate an 8-round related-tweak differential attack against the cipher. With \(2^{33.27}\) chosen-plaintexts and \(2^{92.71}\) 8-round encryptions, the 128-bit key can be recovered. In addition, we find an 8-round related-key differential with a probability of \(2^{-46.88}\) and employ it to develop a full-round related-key differential attack. The full-round attack is marginal, and the 128-bit key can be retrieved using \(2^{47.34}\) chosen-plaintexts and \(2^{123.91}\) full-round encryptions. Despite the impractical complexity of the newly proposed attacks, the security of HALFLOOP-48 in the related-key attack setting is compromised. Therefore, we assert that caution is necessary to prevent misuse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Given that \(\mathrm{\Delta }_{0}[i] \oplus v[i]\) equals \(\mathrm{\Delta }_{0}[i]\) or \(\overline{\mathrm{\Delta }_{0}[i] }\) contingent on the value of \(v_{i}\), the expression is a clause.
- 2.
https://github.com/classabbyamp/espresso-logic contains a modern, compilable re-host of the Espresso heuristic logic minimizer.
References
Interoperability and performance standards for medium and high frequency radio systems. United States Department of Defense Interface Standard MIL-STD-188-141D
Specification for the advanced encryption standard (AES). Federal Information Processing Standards Publication 197 (2001)
Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling for (large) S-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)
Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers against differential cryptanalysis. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas in Cryptography - SAC 2018. LNCS, vol. 11349, pp. 163–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_8
Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28
Blondeau, C., Gérard, B., Tillich, J.: Accurate estimates of the data complexity and success probability for various cryptanalyses. Des. Codes Cryptogr. 59(1–3), 3–34 (2011)
Boura, C., Coggia, D.: Efficient MILP modelings for Sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)
Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.: Logic Minimization Algorithms for VLSI Synthesis, The Kluwer International Series in Engineering and Computer Science, vol. 2. Springer, New York (1984). https://doi.org/10.1007/978-1-4613-2821-6
Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3–5, 1971, Shaker Heights, Ohio, USA, pp. 151–158. ACM (1971)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Dansarie, M., Derbez, P., Leander, G., Stennes, L.: Breaking HALFLOOP-24. IACR Trans. Symmetric Cryptol. 2022(3), 217–238 (2022)
Kim, S., Hong, D., Sung, J., Hong, S.: Accelerating the best trail search on AES-like ciphers. IACR Trans. Symmetric Cryptol. 2022(2), 201–252 (2022)
Li, T., Sun, Y.: Superball: a new approach for MILP modelings of Boolean functions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022)
Liu, Y., et al.: STP models of optimal differential and linear trail for S-box based ciphers. Sci. China Inf. Sci. 64(5), 159103 (2021)
Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with applications to SPECK and Chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_26
Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053451
Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24
Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_5
Sun, L., Wang, M.: SOK: modeling for large S-boxes oriented to differential probabilities and linear correlations. IACR Trans. Symmetric Cryptol. 2023(1), 111–151 (2023)
Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and Midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)
Acknowledgements
The research leading to these results has received funding from the National Natural Science Foundation of China (Grant No. 62272273, Grant No. 62002201, Grant No. 62032014), the National Key Research and Development Program of China (Grant No. 2018YFA0704702), and the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025). Ling Sun gratefully acknowledges the support by the Program of TaiShan Scholars Special Fund for young scholars.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, Y., Sun, L. (2024). Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48. In: Pöpper, C., Batina, L. (eds) Applied Cryptography and Network Security. ACNS 2024. Lecture Notes in Computer Science, vol 14585. Springer, Cham. https://doi.org/10.1007/978-3-031-54776-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-54776-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54775-1
Online ISBN: 978-3-031-54776-8
eBook Packages: Computer ScienceComputer Science (R0)