Abstract
Kidney and Kidney Tumor Segmentation Challenge (KiTS) 2023 [6] offers a platform for researchers to compare their solutions to segmentation from 3D CT. In this work, we describe our submission to the challenge using automated segmentation of Auto3DSeg (https://monai.io/apps/auto3dseg) available in MONAI (https://github.com/Project-MONAI/MONAI). Our solution achieves the average dice of 0.835 and surface dice of 0.723, which ranks first and wins the KiTS 2023 challenge (https://kits-challenge.org/kits23/#kits23-official-results).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Project-MONAI/MONAI. https://doi.org/10.5281/zenodo.5083813
Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22
He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: Dints: differentiable neural network topology search for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2021)
Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med. Image Anal. 67, 101821 (2021)
Heller, N., et al.: The 2023 kidney and kidney tumor segmentation challenge. https://kits-challenge.org/kits23/
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)
Zhao, Z., Chen, H., Wang, L.: A coarse-to-fine framework for the 2021 kidney and kidney tumor segmentation challenge. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds.) Kidney and Kidney Tumor Segmentation, pp. 53–58 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Myronenko, A., Yang, D., He, Y., Xu, D. (2024). Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge. In: Heller, N., et al. Kidney and Kidney Tumor Segmentation. KiTS 2023. Lecture Notes in Computer Science, vol 14540. Springer, Cham. https://doi.org/10.1007/978-3-031-54806-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-54806-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54805-5
Online ISBN: 978-3-031-54806-2
eBook Packages: Computer ScienceComputer Science (R0)