Skip to main content

Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction

  • Conference paper
  • First Online:
Myopic Maculopathy Analysis (MICCAI 2023)

Abstract

Myopic macular degeneration is the most common complication of myopia and the primary cause of vision loss in individuals with pathological myopia. Early detection and prompt treatment are crucial in preventing vision impairment due to myopic maculopathy. This was the focus of the Myopic Maculopathy Analysis Challenge (MMAC), in which we participated. In task 1, classification of myopic maculopathy, we employed the contrastive learning framework, specifically SimCLR, to enhance classification accuracy by effectively capturing enriched features from unlabeled data. This approach not only improved the intrinsic understanding of the data but also elevated the performance of our classification model. For Task 2 (segmentation of myopic maculopathy plus lesions), we have developed independent segmentation models tailored for different lesion segmentation tasks and implemented a test-time augmentation strategy to further enhance the model’s performance. As for Task 3 (prediction of spherical equivalent), we have designed a deep regression model based on the data distribution of the dataset and employed an integration strategy to enhance the model’s prediction accuracy. The results we obtained are promising and have allowed us to position ourselves in the Top 6 of the classification task, the Top 2 of the segmentation task, and the Top 1 of the prediction task. The code is available at https://github.com/liyihao76/MMAC_LaTIM_Solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML’20, JMLR.org (2020)

    Google Scholar 

  4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 3242 (2021)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929

  6. El Habib Daho, M., et al.: Improved automatic diabetic retinopathy severity classification using deep multimodal fusion of UWF-CFP and OCTA images. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds.) Ophthalmic Medical Image Analysis. OMIA 2023. LNCS, vol. 14096, pp. 11–20. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44013-7_2

  7. Fan, T., Wang, G., Li, Y., Wang, H.: Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access 8, 179656–179665 (2020)

    Article  Google Scholar 

  8. Gwenolé, Q., Hassan, A.H., Mathieu, L., Pierre-Henri, C., Pascale, M., Béatrice, C.: Explain: explanatory artificial intelligence for diabetic retinopathy diagnosis. Med. Image Anal. 72 (2021). https://doi.org/10.1016/j.media.2021.102118

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). https://arxiv.org/abs/1512.03385

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016)

    Article  Google Scholar 

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  13. Ikuno, Y.: Overview of the complications of high myopia. Retina 37(12), 2347–2351 (2017)

    Article  Google Scholar 

  14. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  15. Kirillov, A., He, K., Girshick, R., Dollár, P.: A unified architecture for instance and semantic segmentation. In: CVPR (2017)

    Google Scholar 

  16. Kwon, G., Kim, E., Kim, S., Bak, S., Kim, M., Kim, J.: Bag of tricks for developing diabetic retinopathy analysis framework to overcome data scarcity. In: Sheng, B., Aubreville, M. (eds.) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. LNCS, vol. 13597, pp. 59–73. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33658-4_7

  17. Lahsaini, I., El Habib Daho, M., Chikh, M.A.: Deep transfer learning based classification model for covid-19 using chest CT-scans. Pattern Recogn. Lett. 152, 122–128 (2023). https://doi.org/10.1016/j.patrec.2021.08.035

  18. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Li, L.F., et al.: Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children. NPJ Digit. Med. 6(10) (2023). https://doi.org/10.1038/s41746-023-00752-8

  20. Li, Y., et al.: Segmentation, classification, and quality assessment of UW-OCTA images for the diagnosis of diabetic retinopathy. In: Sheng, B., Aubreville, M. (eds.) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. LNCS, vol. 13597, pp. 146–160. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33658-4_14

  21. Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)

    Google Scholar 

  22. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. CoRR abs/2103.14030 (2021). https://arxiv.org/abs/2103.14030

  23. Ohno-Matsui, K., et al.: International photographic classification and grading system for myopic maculopathy. Am. J. Ophthalmol. 159(5), 877–883 (2015)

    Article  Google Scholar 

  24. Qian, B., et al.: Drac: diabetic retinopathy analysis challenge with ultra-wide optical coherence tomography angiography images. arXiv preprint arXiv:2304.02389 (2023)

  25. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  26. Silva, R.: Myopic maculopathy: a review. Ophthalmologica 228(4), 197–213 (2012)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  29. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  30. Yokoi, T., Ohno-Matsui, K.: Diagnosis and treatment of myopic maculopathy. Asia-Pacific J. Ophthalmol. 7(6), 415–421 (2018)

    Google Scholar 

  31. Yue, Z., et al.: Performances of artificial intelligence in detecting pathologic myopia: a systematic review and meta-analysis. Eye (2023). https://doi.org/10.1038/s41433-023-02551-7

  32. Zeghlache, R., et al.: Longitudinal self-supervised learning using neural ordinary differential equation. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C., Zamzmi, G. (eds.) Predictive Intelligence in Medicine. PRIME 2023. LNCS, vol. 14277, pp. 1–13. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46005-0_1

  33. Zeghlache, R. et al.: Detection of Diabetic Retinopathy Using Longitudinal Self-supervised Learning. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) Ophthalmic Medical Image Analysis. OMIA 2022. LNCS, vol. 13576, pp. 43–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16525-2_5

  34. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  35. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The work was conducted in the framework of the ANR RHU project Evired. This work benefited from state aid managed by the French National Research Agency under the “Investissement d’Avenir” program, reference ANR-18-RHUS-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa El Habib Daho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2024). Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction. In: Sheng, B., Chen, H., Wong, T.Y. (eds) Myopic Maculopathy Analysis. MICCAI 2023. Lecture Notes in Computer Science, vol 14563. Springer, Cham. https://doi.org/10.1007/978-3-031-54857-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54857-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54856-7

  • Online ISBN: 978-3-031-54857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics