Skip to main content

Beyond MobileNet: An Improved MobileNet for Retinal Diseases

  • Conference paper
  • First Online:
Myopic Maculopathy Analysis (MICCAI 2023)

Abstract

Myopic Maculopathy (MM) is the leading cause of severe vision loss or blindness. Deep learning-based automated tools are indispensable in assisting clinicians in diagnosing and monitoring RD in modern medicine. Recently, an increasing number of works in this field have taken advantage of Vision Transformer to achieve state-of-the-art performance with more parameters and higher model complexity compared to Convolutional Neural Networks (CNNs). Such sophisticated model designs, however, are prone to be overfitting and hinder their advantages in specific tasks in medical image analysis. In this work, we argue that a well-calibrated CNN model may mitigate these problems. To this end, we empirically investigated the macro and micro designs of a CNN and its training strategies by starting with a standard MobileNet. Based on the investigation, we proposed a lightweight MobileNet training framework equipped with a series of optimal parameters and modules based on retinal images. As a result of performance, our model secured third place in the MICCAI MMAC 2023 Challenge - Classification of Myopic Maculopathy. Our software package is available at https://github.com/Retinal-Research/NN-MOBILENET

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arega, T.W., Legrand, F., Bricq, S., Meriaudeau, F.: Using MRI-specific data augmentation to enhance the segmentation of right ventricle in multi-disease, multi-center and multi-view cardiac MRI. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 250–258. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_27

    Chapter  Google Scholar 

  2. Che, H., Jin, H., Chen, H.: Learning robust representation for joint grading of ophthalmic diseases via adaptive curriculum and feature disentanglement. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 523–533. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_50

    Chapter  Google Scholar 

  3. Cubuk, E.D., Zoph, B., et al.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 3242 (2021)

    Article  Google Scholar 

  5. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33, 231–234 (2014)

    Article  Google Scholar 

  6. Han, D., Yun, S., Heo, B., Yoo, Y.: Rethinking channel dimensions for efficient model design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 732–741 (2021)

    Google Scholar 

  7. Heo, B., et al.: AdamP: slowing down the slowdown for momentum optimizers on scale-invariant weights. arXiv preprint arXiv:2006.08217 (2020)

  8. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016)

    Article  Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Jiang, Y., et al.: Satformer: saliency-guided abnormality-aware transformer for retinal disease classification in fundus image. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 987–994 (2022)

    Google Scholar 

  11. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

    Article  Google Scholar 

  12. Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.W., Heng, P.A.: CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans. Med. Imaging 39, 1483–1493 (2020)

    Article  Google Scholar 

  13. Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_9

    Chapter  Google Scholar 

  14. Liu, R., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)

    Article  Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  16. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations

    Google Scholar 

  18. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  19. Sánchez, C.I., et al.: Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest. Ophthalmol. Vis. Sci. 52(7), 4866–4871 (2011)

    Article  Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  21. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  22. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  23. Uysal, E.S., Bilici, M.Ş., Zaza, B.S., Özgenç, M.Y., Boyar, O.: Exploring the limits of data augmentation for retinal vessel segmentation. arXiv preprint arXiv:2105.09365 (2021)

  24. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  27. Yorston, D.: Retinal diseases and vision 2020. Commun. Eye Health 16(46), 19–20 (2003)

    Google Scholar 

  28. Yu, S., et al.: MIL-VT: multiple instance learning enhanced vision transformer for fundus image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 45–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_5

    Chapter  Google Scholar 

  29. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6023–6032 (2019)

    Google Scholar 

  30. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  31. Zhong, Z., et al.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  32. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  33. Zhu, W., et al.: Self-supervised equivariant regularization reconciles multiple instance learning: joint referable diabetic retinopathy classification and lesion segmentation. In: 18th International Symposium on Medical Information Processing and Analysis (SIPAIM) (2022)

    Google Scholar 

  34. Zhu, W., et al.: OTRE: where optimal transport guided unpaired image-to-image translation meets regularization by enhancing. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) IPMI 2023. LNCS, vol. 13939, pp. 415–427. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_32

    Chapter  Google Scholar 

  35. Zhu, W., Qiu, P., Farazi, M., Nandakumar, K., Dumitrascu, O.M., Wang, Y.: Optimal transport guided unsupervised learning for enhancing low-quality retinal images. arXiv preprint arXiv:2302.02991 (2023)

  36. Zhu, W., Qiu, P., Lepore, N., Dumitrascu, O.M., Wang, Y.: NNMobile-Net: rethinking cnn design for deep learning-based retinopathy research. arXiv preprint arXiv:2306.01289 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W. et al. (2024). Beyond MobileNet: An Improved MobileNet for Retinal Diseases. In: Sheng, B., Chen, H., Wong, T.Y. (eds) Myopic Maculopathy Analysis. MICCAI 2023. Lecture Notes in Computer Science, vol 14563. Springer, Cham. https://doi.org/10.1007/978-3-031-54857-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54857-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54856-7

  • Online ISBN: 978-3-031-54857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics