Skip to main content

Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network

  • Conference paper
  • First Online:
Myopic Maculopathy Analysis (MICCAI 2023)

Abstract

Myopia is a high-incidence disease that widely exists across various regions. If left unaddressed, it may escalate into high myopia. The leading cause of visual impairment is myopic maculopathy. Currently, certain deep-learning techniques have been employed for the analysis of images depicting myopic maculopathy in fundus photography. These methods are dedicated to assisting physicians in efficient disease diagnosis. In our work, a deep learning framework is introduced to classify images of five different severities of myopic maculopathy. First, we employ a diffusion model to generate a series of images for data augmentation to alleviate the pressure of uneven distribution of categories in training datasets, then we divide images into multiple patches and perform self-supervised learning to generate patch-level feature embeddings. Building upon the above foundation, an aggregator is proposed based on multiple instance learning to achieve image-level classification. We demonstrate the effectiveness of this method in four sufficient experiments with three key evaluation metrics of quadratic-weighted kappa, F1 score, and specificity. Our approach secured the tenth position in the Myopic Maculopathy Analysis Challenge 2023 (MICCAI MMAC 2023).

J. Li, J. Soon and Q. Zhang—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buch, H., Vinding, T., La Cour, M., Appleyard, M., Jensen, G.B., Nielsen, N.V.: Prevalence and causes of visual impairment and blindness among 9980 scandinavian adults: the Copenhagen City eye study. Ophthalmology 111(1), 53–61 (2004)

    Article  Google Scholar 

  2. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  3. Cotter, S.A., Varma, R., Ying-Lai, M., Azen, S.P.: Causes of low vision and blindness in adult Latinos

    Google Scholar 

  4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 3242 (2021)

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Ran, D., et al.: Deep learning approach for automated detection of myopic maculopathy and pathologic myopia in fundus images. Ophthalmol. Retina 5(12), 1235–1244 (2021)

    Article  Google Scholar 

  8. Gadermayr, M., Tschuchnig, M.: Multiple instance learning for digital pathology: a review on the state-of-the-art, limitations & future potential. arXiv preprint arXiv:2206.04425 (2022)

  9. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  10. Gu, J., et al.: Multi-scale high-resolution vision transformer for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12094–12103 (2022)

    Google Scholar 

  11. Han, K., Wang, Y., Guo, J., Tang, Y., Enhua, W.: Vision GNN: an image is worth graph of nodes. Adv. Neural. Inf. Process. Syst. 35, 8291–8303 (2022)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hemelings, R., Elen, B., Blaschko, M.B., Jacob, J., Stalmans, I., De Boever, P.: Pathological myopia classification with simultaneous lesion segmentation using deep learning. Comput. Methods Programs Biomed. 199, 105920 (2021)

    Article  Google Scholar 

  14. Himami, Z.R., Bustamam, A., Anki, P.: Deep learning in image classification using dense networks and residual networks for pathologic myopia detection. In: 2021 International Conference on Artificial Intelligence and Big Data Analytics, pp. 1–6. IEEE (2021)

    Google Scholar 

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  16. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  17. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016)

    Article  Google Scholar 

  18. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  19. Iwase, A., et al.: Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi study. Ophthalmology 113(8), 1354–1362 (2006)

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  22. Liu, R., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)

    Article  Google Scholar 

  23. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  24. Li, L., et al.: AI-model for identifying pathologic myopia based on deep learning algorithms of myopic maculopathy classification and “plus’’ lesion detection in fundus images. Front. Cell Dev. Biol. 9, 719262 (2021)

    Article  Google Scholar 

  25. Lu, M.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Google Scholar 

  26. Maron, O., Lozano-Pérez, T., A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 10 (1997)

    Google Scholar 

  27. Morgan, I.G., Ohno-Matsui, K., Saw, S.-M.: Myopia. The Lancet 379(9827), 1739–1748 (2012)

    Article  Google Scholar 

  28. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  29. Ohno-Matsui, K., et al.: International photographic classification and grading system for myopic maculopathy. Am. J. Ophthalmol. 159(5), 877–883 (2015)

    Article  Google Scholar 

  30. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  31. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural. Inf. Process. Syst. 34, 2136–2147 (2021)

    Google Scholar 

  32. Yun Sun, Yu., et al.: A deep network using coarse clinical prior for myopic maculopathy grading. Comput. Biol. Med. 154, 106556 (2023)

    Article  Google Scholar 

  33. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  34. Wang, R., et al.: Efficacy of a deep learning system for screening myopic maculopathy based on color fundus photographs. Ophthalmol Therapy 12(1), 469–484 (2023)

    Article  Google Scholar 

  35. Xu, L., et al.: Causes of blindness and visual impairment in urban and rural areas in beijing: the beijing eye study. Ophthalmology 113(7), 1134-e1 (2006)

    Article  Google Scholar 

  36. Yokoi, T., Ohno-Matsui, K.: Diagnosis and treatment of myopic maculopathy. Asia-Pac. J. Ophthalmol. 7(6), 415–421 (2018)

    Google Scholar 

  37. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  38. Zhu, S.-J., et al.: Research on classification method of high myopic maculopathy based on retinal fundus images and optimized alfa-mix active learning algorithm. Int. J. Ophthalmol. 16(7), 995 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Science Foundation of China (NSFC) under Grant 61975089; in part by the grant from the Shenzhen Science and Technology Innovation Commission (Number: KCXFZ20201221173207022, WDZC2020200821141349001, JCYJ20200109110606054). The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Soon, J., Zhang, Q., Zhang, Q., He, Y. (2024). Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network. In: Sheng, B., Chen, H., Wong, T.Y. (eds) Myopic Maculopathy Analysis. MICCAI 2023. Lecture Notes in Computer Science, vol 14563. Springer, Cham. https://doi.org/10.1007/978-3-031-54857-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54857-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54856-7

  • Online ISBN: 978-3-031-54857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics