Skip to main content

Implicit QBF Encodings for Positional Games

  • Conference paper
  • First Online:
Advances in Computer Games (ACG 2023)

Abstract

We address two bottlenecks for concise QBF encodings of maker-breaker positional games, like Hex and Tic-Tac-Toe. We improve a baseline QBF encoding by representing winning configurations implicitly. The second improvement replaces variables for explicit board positions by a universally quantified symbolic board position. The paper evaluates the size of these lifted encodings, depending on board size and game depth. It reports the performance of QBF solvers on these encodings. We study scalability up to 19\(\times \)19 boards, played in human Hex tournaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precise encoding and measurement details are available in a technical report [29].

  2. 2.

    [29, Appendix B] also provides lifted and stateless encodings with implicit-board encodings and explicit-goal conditions, for completeness.

  3. 3.

    Available at https://github.com/vale1410/positional-games-qbf-encoding.

  4. 4.

    Available at https://github.com/irfansha/Q-sage.

  5. 5.

    We display an asymptotically equivalent function. [29, App. C] shows the exact size.

  6. 6.

    From https://www.littlegolem.net. See [29, Appendix A] for the selection process.

  7. 7.

    [29, Appendix D] gives detailed measurements per solver/preprocessor. [29, App. E] shows memory plots, and [29, Appendix F] separates True and False instances.

  8. 8.

    Available at http://www.qbflib.org/qbfeval22.php.

References

  1. Ansotegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: AAAI 2005, pp. 275–281 (2005). http://dl.acm.org/citation.cfm?id=1619332.1619378

  2. Arneson, B., Hayward, R., Henderson, P.: MoHex wins Hex tournament. ICGA J. 32(2), 114 (2009)

    Article  Google Scholar 

  3. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjorner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_10

    Chapter  Google Scholar 

  4. Bonnet, É., Gaspers, S., Lambilliotte, A., Rümmele, S., Saffidine, A.: The parameterized complexity of positional games. In: ICALP 2017, pp. 90:1–90:14 (2017)

    Google Scholar 

  5. Bonnet, É., Jamain, F., Saffidine, A.: On the complexity of connection games. Theor. Comput. Sci. (TCS) 644, 2–28 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boucher, S., Villemaire, R.: Quantified Boolean solving for achievement games. In: 44th German Conference on Artificial Intelligence (KI), pp. 30–43 (2021)

    Google Scholar 

  7. Cashmore, M., Fox, M., Giunchiglia, E.: Planning as quantified Boolean formula. In: ECAI 2012, pp. 217–222 (2012). https://doi.org/10.3233/978-1-61499-098-7-217

  8. Diptarama, Yoshinaka, R., Shinohara, A.: QBF encoding of Generalized Tic-Tac-Toe. In: 4th IW on Quantified Boolean Formulas (QBF), pp. 14–26 (2016)

    Google Scholar 

  9. Ederer, T., Lorenz, U., Opfer, T., Wolf, J.: Modeling games with the help of quantified integer linear programs. In: van den Herik, H.J., Plaat, A. (eds.) ACG. LNCS, vol. 7168, pp. 270–281. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-31866-5_23

    Chapter  Google Scholar 

  10. Gale, D.: The game of Hex and the Brouwer fixed-point theorem. Am. Math. Mon. 86(10), 818–827 (1979)

    Article  MathSciNet  Google Scholar 

  11. Hartisch, M.: Quantified integer programming with polyhedral and decision-dependent uncertainty. Ph.D. thesis, Universität Siegen (2020)

    Google Scholar 

  12. Hartisch, M., Lorenz, U.: A novel application for game tree search - exploiting pruning mechanisms for quantified integer programs. In: Cazenave, T., van den Herik, J., Saffidine, A., Wu, I.C. (eds.) ACG. LNCS, vol. 12516, pp. 66–78. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-65883-0_6

    Chapter  Google Scholar 

  13. Hayward, R.B., Toft, B.: Hex, the full story. AK Peters/CRC Press/Taylor (2019)

    Google Scholar 

  14. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: GandALF. EPTCS, vol. 277, pp. 88–102 (2018). https://doi.org/10.4204/EPTCS.277.7

  15. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. (JAIR) 53, 127–168 (2015)

    Article  MathSciNet  Google Scholar 

  16. Janota, M.: Circuit-based search space pruning in QBF. In: Beyersdorff, O., Wintersteiger, C. (eds.) SAT. LNCS, vol. 10929, pp. 187–198. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-94144-8_12

    Chapter  Google Scholar 

  17. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI-16 Workshop on Beyond NP (2016)

    Google Scholar 

  18. Jung, J.C., Mayer-Eichberger, V., Saffidine, A.: QBF programming with the modeling language Bule. In: Proceedings SAT 2022. Schloss Dagstuhl-Leibniz (2022)

    Google Scholar 

  19. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. ENTCS 174(3), 45–56 (2007). https://doi.org/10.1016/j.entcs.2006.12.022

    Article  Google Scholar 

  20. Kautz, H.A., McAllester, D.A., Selman, B.: Encoding plans in propositional logic. In: Principles of Knowledge Representation and Reasoning (KR), pp. 374–384 (1996)

    Google Scholar 

  21. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE. LNCS, vol. 10395, pp. 371–384. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63046-5_23

    Chapter  Google Scholar 

  22. Lonsing, F., Egly, U.: QRATPre+: effective QBF preprocessing via strong redundancy properties. In: Janota, M., Lynce, I. (eds.) SAT. LNCS, vol. 11628, pp. 203–210. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-24258-9_14

    Chapter  Google Scholar 

  23. Mayer-Eichberger, V., Saffidine, A.: Positional games and QBF: the corrective encoding. In: Theory and Applications of Satisfiability Testing (SAT), pp. 447–463 (2020)

    Google Scholar 

  24. Mayer-Eichberger, V., Saffidine, A.: Positional games and QBF: a polished encoding. arXiv 2005.05098 (2023). https://doi.org/10.48550/arXiv.2005.05098

  25. Pulina, L., Seidl, M., Shukla, A.: The 14th QBF solvers evaluation (QBFEVAL 2022) (2022). http://www.qbflib.org/QBFEVAL22_PRES.pdf

  26. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Proceedings FMCAD 2015, pp. 136–143. IEEE (2015)

    Google Scholar 

  27. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15, 167–191 (1981)

    Article  MathSciNet  Google Scholar 

  28. Shaik, I.: Concise Encodings for Planning and 2-Player Games. Ph.D. thesis, Aarhus University (2023)

    Google Scholar 

  29. Shaik, I., Mayer-Eichberger, V., van de Pol, J., Saffidine, A.: Implicit state and goals in QBF encodings for positional games (extended version). arXiv 2301.07345 (2023). https://doi.org/10.48550/arXiv.2301.07345

  30. Shaik, I., van de Pol, J.: Classical planning as QBF without grounding. In: ICAPS, pp. 329–337. AAAI Press (2022)

    Google Scholar 

  31. Shaik, I., van de Pol, J.: Concise QBF encodings for games on a grid. arXiv 2303.16949 (2023). https://doi.org/10.48550/ARXIV.2303.16949

  32. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

    Chapter  Google Scholar 

  33. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor HQSpre - underlying theory and its implementation. J. Satisf. Boolean Model. 11(1), 3–52 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaco van de Pol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaik, I., Mayer-Eichberger, V., van de Pol, J., Saffidine, A. (2024). Implicit QBF Encodings for Positional Games. In: Hartisch, M., Hsueh, CH., Schaeffer, J. (eds) Advances in Computer Games. ACG 2023. Lecture Notes in Computer Science, vol 14528. Springer, Cham. https://doi.org/10.1007/978-3-031-54968-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54968-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54967-0

  • Online ISBN: 978-3-031-54968-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics