Skip to main content

RoboCup@Home SSPL Champion 2023: RoboBreizh, a Fully Embedded Approach

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14140))

Included in the following conference series:

  • 484 Accesses

Abstract

This paper presents the approach employed by the team RoboBreizh to win the championship in the 2023 RoboCup@Home Social Standard Platform League (SSPL). RoboBreizh decided to limit itself to an entirely embedded system with no connection to the internet and external devices. This article describes the design of embedded solutions including the global architecture, perception, navigation, interaction, reasoning and digital twin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/awesomebytes/gentoo_prefix_ci_32b.

  2. 2.

    https://hub.docker.com/r/awesomebytes/pepper_2.5.5.5.

  3. 3.

    https://github.com/ros/ros-overlay.

  4. 4.

    https://github.com/Maelic/libqi-python.

  5. 5.

    https://github.com/onnx/onnx.

  6. 6.

    https://github.com/itseez/opencv.

  7. 7.

    https://github.com/kaldi-asr/kaldi.

  8. 8.

    https://github.com/radualexandrub/Age-Gender-Classification-on-RaspberryPi4-with-TFLite-PyQt5.

  9. 9.

    https://tfhub.dev/google/lite-model/movenet/multipose/lightning/tflite/float16/1.

  10. 10.

    https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4.

  11. 11.

    https://github.com/ultralytics/ultralytics.

  12. 12.

    https://roboflow.com/.

  13. 13.

    https://github.com/ultralytics/ultralytics.

  14. 14.

    https://github.com/microsoft/onnxruntime/releases/tag/v1.4.0.

  15. 15.

    https://github.com/opencv/opencv/tree/4.7.0.

  16. 16.

    https://www.tensorflow.org/lite.

  17. 17.

    The Small version of YOLOV8 (YOLOV8s) has 11.2 million parameters and YOLOV8n 3.2 million.

  18. 18.

    http://wiki.ros.org/amcl.

  19. 19.

    http://wiki.ros.org/dwa_local_planner?distro=noetic.

  20. 20.

    https://github.com/alphacep/vosk.

  21. 21.

    https://github.com/kaldi-asr/kaldi.

  22. 22.

    https://onnxruntime.ai/.

  23. 23.

    https://unity.com/.

  24. 24.

    https://zeromq.org/.

  25. 25.

    http://doc.aldebaran.com/2-4/dev/libqi/index.html.

References

  1. Abadi, M., et al.: TensorFlow: a system for Large-Scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Amadio, G., Xu, B.: Portage: bringing hackers’ wisdom to science. arXiv preprint arXiv:1610.02742 (2016)

  3. Buche, C.: RoboBreizh, RoboCup@Home SSPL Champion 2022. Springer, Heidelberg (2023)

    Book  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Hwang, J.D., et al.: (comet-) atomic 2020: On symbolic and neural commonsense knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6384–6392 (2021)

    Google Scholar 

  6. Jo, B., Kim, S.: Comparative Analysis of OpenPose, PoseNet, and MoveNet models for pose estimation in mobile devices. Traitement du Signal 39(1), 119–124 (2022)

    Article  Google Scholar 

  7. Levesque, H., Davis, E., Morgenstern, L.: The winograd schema challenge. In: Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning (2012)

    Google Scholar 

  8. Li, L., Neau, M., Ung, T., Buche, C.: Crossing real and virtual: pepper robot as an interactive digital twin. In: Proceedings of RoboCup Symposium (2023)

    Google Scholar 

  9. Macenski, S., Tsai, D., Feinberg, M.: Spatio-temporal voxel layer: a view on robot perception for the dynamic world. Int. J. Adv. Rob. Syst. 17(2) (2020)

    Google Scholar 

  10. Neau, M., Santos, P., Bossser, A., Buche, C.: In defense of scene graph generation for human-robot open-ended interaction in service robotics. In: Proceedings of RoboCup Symposium (2023)

    Google Scholar 

  11. Pfeiffer, S., et al.: UTS unleashed! RoboCup@Home SSPL champions 2019. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 603–615. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_49

    Chapter  Google Scholar 

  12. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  13. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: An open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  14. Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., Zhou, D.: Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984 (2020)

  15. Wang, S., Neau, M., Buche, C.: RoboNLU: advancing command understanding with a novel lightweight bert-based approach for service robotics. In: Proceedings of RoboCup Symposium (2023)

    Google Scholar 

  16. Wu, W., Peng, H., Yu, S.: YuNet: a tiny millisecond-level face detector. Mach. Intell. Res. (2023)

    Google Scholar 

  17. Ziparo, V.A., Iocchi, L., Nardi, D.: Petri net plans. In: Fourth International Workshop on Modelling of Objects, Components, and Agents, pp. 267–290 (2006)

    Google Scholar 

Download references

Acknowledgments

This article benefited from the support of CERVVAL and Brittany Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Buche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buche, C., Neau, M., Ung, T., Li, L., Wang, S., Bono, C.L. (2024). RoboCup@Home SSPL Champion 2023: RoboBreizh, a Fully Embedded Approach. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics