Abstract
Small Size League (SSL) robots require mobile navigation to interact with their surroundings. Therefore, robots may rely on odometry to track their movement from the actuator’s data and navigate. The odometry is based on the robot’s kinematic model, which explains how actuators influence movement. However, robot’s kinematic models have parameter inaccuracy and cause systematic errors that accumulate. This study proposes to optimize odometry accuracy using Particle Swarm Optimization (PSO). The method records the robot’s movement from its sensor to simulate the traveled path with different robot’s kinematic models enabling parameters optimization. The proposed technique improved an SSL odometry accuracy by 76%, with less than 5 cm error in a 10-m path. With a reduced computational cost, it enables longer autonomous navigation for SSL robots and outperforms previous methods.
Supported by Centro de Informática (CIn - UFPE), Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and RobôCIn Robotics Team.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. The MIT Press, Cambridge (2011)
Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: the shared vision system for the RoboCup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11876-0_37
Abbenseth, J., Ommer, N.: Position control of an omnidirectional mobile robot (2015)
Kolar, P., Benavidez, P., Jamshidi, M.: Survey of datafusion techniques for laser and vision based sensor integration for autonomous navigation. Sensors 20(8) (2020)
Lin, P., Liu, D., Yang, D., Zou, Q., Du, Y., Cong, M.: Calibration for odometry of omnidirectional mobile robots based on kinematic correction. In: 2019 14th International Conference on Computer Science and Education (ICCSE), pp. 139–144 (2019)
Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12(6), 869–880 (1996)
Sousa, R.B., Petry, M.R., Costa, P.G.: OptiOdom: a generic approach for odometry calibration of wheeled mobile robots. J. Intell. Robot. Syst. 105, 39 (2022)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Silva, C., et al.: Robôcin 2020 team description paper (2020)
Tomasi, D.L., Todt, E.: Rotational odometry calibration for differential robot platforms. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)
Cao, Y., et al.: Parameter optimization of CPG network based on PSO for manta ray robot. In: Wu, M., Niu, Y., Gu, M., Cheng, J. (eds.) ICAUS 2021. LNEE, vol. 861, pp. 3062–3072. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9492-9_300
Cavalcanti, L., Joaquim, R., Barros, E.: Optimized wireless control and telemetry network for mobile soccer robots. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 177–188. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7_15
Baghdadi, A., Cavuoto, L.A., Crassidis, J.L.: Hip and trunk kinematics estimation in gait through Kalman filter using IMU data at the ankle. IEEE Sens. J. 18(10), 4253–4260 (2018)
Kecskés, I., Székács, L., Fodor, J.C., Odry, P.: PSO and GA optimization methods comparison on simulation model of a real hexapod robot. In: 2013 IEEE 9th International Conference on Computational Cybernetics (ICCC), pp. 125–130 (2013)
Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. 58, 100718 (2020)
Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Springer, New York (2003). https://doi.org/10.1007/b97366
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cavalcanti, L., Melo, J.G., Joaquim, R., Barros, E. (2024). Improving Inertial Odometry Through Particle Swarm Optimization in the RoboCup Small Size League. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-55015-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55014-0
Online ISBN: 978-3-031-55015-7
eBook Packages: Computer ScienceComputer Science (R0)