Abstract
In this study, we tackle the challenges of repeated-encounter bilateral automated negotiation (RBAN) by introducing a fine-tuning approach to improve surrogate model-based strategy selection methods. To make this fine-tuning process more effective, we consider two policies: firstly, the aggregating policy, which reduces training parameters, and secondly, the complete-preference integration policy, which improves the use of past negotiation information. Moreover, we propose a convolutional neural network (CNN)-based surrogate model (CSM) to predict a strategy’s performance by analyzing the distribution of utility values in negotiation outcomes. We evaluate the prediction capability of the CSM and the impact of the two policies on both CSM and fine-tuning approach. The experimental results demonstrate that the CSM outperforms existing expert-feature-based opponent models in terms of prediction accuracy. Ablation studies in RBANs reveal the superiority of combining the fine-tuning approach with both policies over using fine-tuning alone or with just one policy. Ablation studies in independent negotiations show that applying either or both policies on the CSM also improves the CSM’s performance in independent negotiations, although the two policies are not initially designed for this context.
Supported by JSPS KAKENHI Grant Numbers 22H03641, 19H04216 and JST FOREST (Fusion Oriented REsearch for disruptive Science and Technology) Grant Number JPMJFR216S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baarslag, T., et al.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198, 73–103 (2013). https://doi.org/10.1016/j.artint.2012.09.004
Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Measuring the performance of online opponent models in automated bilateral negotiation. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, pp. 1–14. Springer, Heidelberg (2012)
Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Predicting the performance of opponent models in automated negotiation. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 59–66. IEEE (2013). https://doi.org/10.1109/WI-IAT.2013.91
Baarslag, T., Hindriks, K., Hendrikx, M., Dirkzwager, A., Jonker, C.: Decoupling negotiating agents to explore the space of negotiation strategies. In: Marsa-Maestre, I., Lopez-Carmona, M.A., Ito, T., Zhang, M., Bai, Q., Fujita, K. (eds.) Novel Insights in Agent-based Complex Automated Negotiation. SCI, vol. 535, pp. 61–83. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54758-7_4
Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The first automated negotiating agents competition (ANAC2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations, pp. 113–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24696-8_7
Chang., S., Fujita., K.: A fine-tuning aggregation convolutional neural network surrogate model of strategy selecting mechanism for repeated-encounter bilateral automated negotiation. In: Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 277–288. INSTICC, SciTePress (2023). https://doi.org/10.5220/0011701300003393
Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3), 159–182 (1998). https://doi.org/10.1016/S0921-8890(98)00029-3
Fujita, K.: Automated strategy adaptation for multi-times bilateral closed negotiations. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1509–1510. AAMAS 2014, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)
Fujita, K.: Compromising adjustment strategy based on TKI conflict mode for multi-times bilateral closed negotiations. Comput. Intell. 34(1), 85–103 (2018). https://doi.org/10.1111/coin.12107
Fujita, K., Ito, T., Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The second automated negotiating agents competition (ANAC2011). In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions, pp. 183–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_11
Güneş, T.D., Arditi, E., Aydoğan, R.: Collective voice of experts in multilateral negotiation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS, pp. 450–458. Springer, Cham (2017)
Ilany, L., Gal, Y.: Algorithm selection in bilateral negotiation. Auton. Agents Multi-Agent Syst. 30(4), 697–723 (2016). https://doi.org/10.1007/s10458-015-9302-8
Kawata, R., Fujita, K.: Meta-strategy based on multi-armed bandit approach for multi-time negotiation. IEICE Trans. Inf. Syst. E103.D(12), 2540–2548 (2020). https://doi.org/10.1587/transinf.2020SAP0003
Matsune, T., Fujita, K.: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations. IEICE Trans. Inf. Syst. E101.D(10), 2474–2484 (2018). https://doi.org/10.1587/transinf.2018EDP7056
Mohammad, Y., Nakadai, S., Greenwald, A.: NegMAS: a platform for automated negotiations. In: Uchiya, T., Bai, Q., Marsá Maestre, I. (eds.) PRIMA 2020. LNCS, vol. 12568, pp. 343–351. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-69322-0_23
Mori, A., Ito, T.: Atlas3: a negotiating agent based on expecting lower limit of concession function. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 169–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_11
Renting, B.M., Hoos, H.H., Jonker, C.M.: Automated configuration of negotiation strategies. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, p. 1116–1124. AAMAS’20, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2020)
Renting, B.M., Hoos, H.H., Jonker, C.M.: Automated configuration and usage of strategy portfolios for mixed-motive bargaining. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1101–1109. AAMAS 2022, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2022)
Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)
Sengupta, A., Mohammad, Y., Nakadai, S.: An autonomous negotiating agent framework with reinforcement learning based strategies and adaptive strategy switching mechanism. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1163–1172. AAMAS 2021, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2021)
Taiji, M., Ikegami, T.: Dynamics of internal models in game players. Physica D 134(2), 253–266 (1999). 10.1016/S0167-2789(99)00115-3, https://www.sciencedirect.com/science/article/pii/S0167278999001153
Van Krimpen, T., Looije, D., Hajizadeh, S.: Hardheaded. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. SCI, vol. 435, pp. 223–227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_17
Wu, L., Chen, S., Gao, X., Zheng, Y., Hao, J.: Detecting and learning against unknown opponents for automated negotiations. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds.) PRICAI 2021. LNCS, pp. 17–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89370-5_2
(Ya’akov) Gal, K., Ilany, L.: The fourth automated negotiation competition. In: Fujita, K., Ito, T., Zhang, M., Robu, V. (eds.) Next Frontier in Agent-based Complex Automated Negotiation. SCI, vol. 596, pp. 129–136. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-55525-4_8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chang, S., Fujita, K. (2024). Effective Adaptive Strategy Selection Using Extended Fine-Tuning and CNN-Based Surrogate Model in Repeated-Encounter Bilateral Automated Negotiation. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2023. Lecture Notes in Computer Science(), vol 14546. Springer, Cham. https://doi.org/10.1007/978-3-031-55326-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-55326-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55325-7
Online ISBN: 978-3-031-55326-4
eBook Packages: Computer ScienceComputer Science (R0)