Skip to main content

Effective Adaptive Strategy Selection Using Extended Fine-Tuning and CNN-Based Surrogate Model in Repeated-Encounter Bilateral Automated Negotiation

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2023)

Abstract

In this study, we tackle the challenges of repeated-encounter bilateral automated negotiation (RBAN) by introducing a fine-tuning approach to improve surrogate model-based strategy selection methods. To make this fine-tuning process more effective, we consider two policies: firstly, the aggregating policy, which reduces training parameters, and secondly, the complete-preference integration policy, which improves the use of past negotiation information. Moreover, we propose a convolutional neural network (CNN)-based surrogate model (CSM) to predict a strategy’s performance by analyzing the distribution of utility values in negotiation outcomes. We evaluate the prediction capability of the CSM and the impact of the two policies on both CSM and fine-tuning approach. The experimental results demonstrate that the CSM outperforms existing expert-feature-based opponent models in terms of prediction accuracy. Ablation studies in RBANs reveal the superiority of combining the fine-tuning approach with both policies over using fine-tuning alone or with just one policy. Ablation studies in independent negotiations show that applying either or both policies on the CSM also improves the CSM’s performance in independent negotiations, although the two policies are not initially designed for this context.

Supported by JSPS KAKENHI Grant Numbers 22H03641, 19H04216 and JST FOREST (Fusion Oriented REsearch for disruptive Science and Technology) Grant Number JPMJFR216S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baarslag, T., et al.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198, 73–103 (2013). https://doi.org/10.1016/j.artint.2012.09.004

    Article  Google Scholar 

  2. Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Measuring the performance of online opponent models in automated bilateral negotiation. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, pp. 1–14. Springer, Heidelberg (2012)

    Google Scholar 

  3. Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Predicting the performance of opponent models in automated negotiation. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 59–66. IEEE (2013). https://doi.org/10.1109/WI-IAT.2013.91

  4. Baarslag, T., Hindriks, K., Hendrikx, M., Dirkzwager, A., Jonker, C.: Decoupling negotiating agents to explore the space of negotiation strategies. In: Marsa-Maestre, I., Lopez-Carmona, M.A., Ito, T., Zhang, M., Bai, Q., Fujita, K. (eds.) Novel Insights in Agent-based Complex Automated Negotiation. SCI, vol. 535, pp. 61–83. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54758-7_4

    Chapter  Google Scholar 

  5. Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The first automated negotiating agents competition (ANAC2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations, pp. 113–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24696-8_7

  6. Chang., S., Fujita., K.: A fine-tuning aggregation convolutional neural network surrogate model of strategy selecting mechanism for repeated-encounter bilateral automated negotiation. In: Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 277–288. INSTICC, SciTePress (2023). https://doi.org/10.5220/0011701300003393

  7. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3), 159–182 (1998). https://doi.org/10.1016/S0921-8890(98)00029-3

    Article  Google Scholar 

  8. Fujita, K.: Automated strategy adaptation for multi-times bilateral closed negotiations. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1509–1510. AAMAS 2014, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)

    Google Scholar 

  9. Fujita, K.: Compromising adjustment strategy based on TKI conflict mode for multi-times bilateral closed negotiations. Comput. Intell. 34(1), 85–103 (2018). https://doi.org/10.1111/coin.12107

    Article  MathSciNet  Google Scholar 

  10. Fujita, K., Ito, T., Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The second automated negotiating agents competition (ANAC2011). In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions, pp. 183–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_11

  11. Güneş, T.D., Arditi, E., Aydoğan, R.: Collective voice of experts in multilateral negotiation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS, pp. 450–458. Springer, Cham (2017)

    Chapter  Google Scholar 

  12. Ilany, L., Gal, Y.: Algorithm selection in bilateral negotiation. Auton. Agents Multi-Agent Syst. 30(4), 697–723 (2016). https://doi.org/10.1007/s10458-015-9302-8

    Article  Google Scholar 

  13. Kawata, R., Fujita, K.: Meta-strategy based on multi-armed bandit approach for multi-time negotiation. IEICE Trans. Inf. Syst. E103.D(12), 2540–2548 (2020). https://doi.org/10.1587/transinf.2020SAP0003

  14. Matsune, T., Fujita, K.: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations. IEICE Trans. Inf. Syst. E101.D(10), 2474–2484 (2018). https://doi.org/10.1587/transinf.2018EDP7056

  15. Mohammad, Y., Nakadai, S., Greenwald, A.: NegMAS: a platform for automated negotiations. In: Uchiya, T., Bai, Q., Marsá Maestre, I. (eds.) PRIMA 2020. LNCS, vol. 12568, pp. 343–351. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-69322-0_23

    Chapter  Google Scholar 

  16. Mori, A., Ito, T.: Atlas3: a negotiating agent based on expecting lower limit of concession function. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 169–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_11

    Chapter  Google Scholar 

  17. Renting, B.M., Hoos, H.H., Jonker, C.M.: Automated configuration of negotiation strategies. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, p. 1116–1124. AAMAS’20, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2020)

    Google Scholar 

  18. Renting, B.M., Hoos, H.H., Jonker, C.M.: Automated configuration and usage of strategy portfolios for mixed-motive bargaining. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1101–1109. AAMAS 2022, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2022)

    Google Scholar 

  19. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)

    Google Scholar 

  20. Sengupta, A., Mohammad, Y., Nakadai, S.: An autonomous negotiating agent framework with reinforcement learning based strategies and adaptive strategy switching mechanism. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1163–1172. AAMAS 2021, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2021)

    Google Scholar 

  21. Taiji, M., Ikegami, T.: Dynamics of internal models in game players. Physica D 134(2), 253–266 (1999). 10.1016/S0167-2789(99)00115-3, https://www.sciencedirect.com/science/article/pii/S0167278999001153

  22. Van Krimpen, T., Looije, D., Hajizadeh, S.: Hardheaded. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. SCI, vol. 435, pp. 223–227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_17

    Chapter  Google Scholar 

  23. Wu, L., Chen, S., Gao, X., Zheng, Y., Hao, J.: Detecting and learning against unknown opponents for automated negotiations. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds.) PRICAI 2021. LNCS, pp. 17–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89370-5_2

    Chapter  Google Scholar 

  24. (Ya’akov) Gal, K., Ilany, L.: The fourth automated negotiation competition. In: Fujita, K., Ito, T., Zhang, M., Robu, V. (eds.) Next Frontier in Agent-based Complex Automated Negotiation. SCI, vol. 596, pp. 129–136. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-55525-4_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbo Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, S., Fujita, K. (2024). Effective Adaptive Strategy Selection Using Extended Fine-Tuning and CNN-Based Surrogate Model in Repeated-Encounter Bilateral Automated Negotiation. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2023. Lecture Notes in Computer Science(), vol 14546. Springer, Cham. https://doi.org/10.1007/978-3-031-55326-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55326-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55325-7

  • Online ISBN: 978-3-031-55326-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics