Skip to main content

Segmented Glioma Classification Using Radiomics-Based Machine Learning: A Comparative Analysis of Feature Selection Techniques

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14546))

Included in the following conference series:

  • 40 Accesses

Abstract

Accurate classification of glioma grades is crucial for effective treatment planning and patient prognosis. In this extended study, we propose a comprehensive approach combining radiomics features and machine learning techniques to classify glioma grades. We explore the effectiveness of different feature selection methods, including Recursive Feature Elimination (RFE), Minimum Redundancy - Maximum Relevance (MRMR), and k-best, in identifying relevant features from segmented glioma for accurate classification. To achieve this, a deep learning approach that combines Convolutional Neural Networks (CNN) based on the hybridization of U-Net and SegNet is investigated in this study.

The evaluation of the proposed approach involves training and testing machine learning models, including Linear Regression, Random Forest and XGBoost, using the selected features from each feature selection technique. The obtained results show that XGBoost with k-best feature selection achieves the highest accuracy and Area Under the Curve (AUC) for distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). This indicates the effectiveness of the k-best feature selection method in capturing the most discriminative information for glioma grade classification. To the best of our knowledge, this is the first study to incorporate machine learning with RFE, MRMR, and k-best feature selection methods for predicting glioma grade. The proposed approach demonstrates improved accuracy compared to existing methods, highlighting the potential of radiomics and machine learning in glioma classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastian, M., Reifenberger, G.: Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Curr. Opin. Oncol. 28(6), 494–501 (2016)

    Article  Google Scholar 

  2. Usinskiene, J., et al.: Optimal differentiation of high-and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 58, 339–350 (2016)

    Article  Google Scholar 

  3. Villa, C., Miquel, C., Mosses, D., Bernier, M., Di Stefano, A.L.: The 2016 World Health Organization classification of tumours of the central nervous system. La Presse Médicale 47(11–12) (2018)

    Google Scholar 

  4. Black, D., Kaneko, S., Walke, A., König, S., Stummer, W., Molina, E.S.: Characterization of autofluorescence and quantitative protoporphyrin IX biomarkers for optical spectroscopy-guided glioma surgery. Sci. Rep. 11(1), 20009 (2021)

    Article  Google Scholar 

  5. Ditto, A., Leone Roberti Maggiore, U., Evangelisti, G., Bogani, G., Raspagliesi, F.: Diagnostic accuracy of magnetic resonance imaging in the pre-operative staging of cervical cancer patients who underwent neoadjuvant treatment: a clinical-surgical-pathologic comparison. Cancers 15(7), 2061 (2023)

    Google Scholar 

  6. Jlassi, A., ElBedoui, K., Barhoumi, W., Maktouf, C.: Unsupervised method based on probabilistic neural network for the segmentation of corpus callosum in MRI scans. In: VISIGRAPP (4: VISAPP) (2019)

    Google Scholar 

  7. Maciej, M.: Radiogenomics: what it is and why it is important. J. Am. Coll. Radiol. 12(8), 862–866 (2015)

    Article  Google Scholar 

  8. Scapicchio, C., Gabelloni, M., Barucci, A., Cioni, D., Saba, L., Neri, E.: A deep look into radiomics. Radiol. Med. 126(10), 1296–1311 (2021)

    Article  Google Scholar 

  9. Kickingereder, P., et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3), 880–889 (2016)

    Article  Google Scholar 

  10. Zhang, B., et al.: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-oncology 19(1), 109–117 (2017)

    Article  Google Scholar 

  11. Máté, M., et al.: Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data. Nat. Protoc. 15(2), 479–512 (2020)

    Article  Google Scholar 

  12. Thomas, B., et al.: Machine learning and glioma imaging biomarkers. Clin. Radiol. 75(1), 20–32 (2020)

    Article  Google Scholar 

  13. Mateusz, B., Mazurowski, M.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 109, 218–225 (2019)

    Article  Google Scholar 

  14. Thaha, M.M., Kumar, P.M., Murugan, Dhanasekeran, Vijayakarthick, Selvi, S.: Brain tumor segmentation using convolutional neural networks in MRI images. J. Med. Syst. 43, 1–10 (2019)

    Google Scholar 

  15. Dingwen, Z., et al.: Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Trans. Image Process. 29, 9032–9043 (2020)

    Article  Google Scholar 

  16. Mohammad, H., et al.: A convolutional neural network approach to brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 195–208. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_17

    Chapter  Google Scholar 

  17. Zhong, Y., et al.: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 250, 112012 (2020)

    Article  Google Scholar 

  18. Xu, D., et al.: Automatic segmentation of low-grade glioma in MRI image based on UNet++ model. J. Phys. Conf. Ser. 1693(1) (2020)

    Google Scholar 

  19. Mohamed, N., Deen, M.J.: Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput. Biol. Med. 121, 103758 (2020)

    Article  Google Scholar 

  20. Rohit, P., Paradkar, R.: Analysis of Lower-Grade Gliomas in MRI Through Segmentation and Genomic Cluster-Shape Feature Correlation. bioRxiv (2022)

    Google Scholar 

  21. Jlassi, A., ElBedoui, K., Barhoumi, W.: Brain tumor segmentation of lower-grade glioma across MRI images using hybrid convolutional neural networks. In: 15th International Conference on Agents and Artificial Intelligence ICAART (2023)

    Google Scholar 

  22. Zeju, L., et al.: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  23. Chia-Feng, L., et al.: Machine learning-based radiomics for molecular subtyping of gliomas machine learning for molecular subtyping of gliomas. Clin. Cancer Res. 24(18), 4429–4436 (2018)

    Article  Google Scholar 

  24. Pan, S., et al.: Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access 7, 102010–102020 (2019)

    Article  Google Scholar 

  25. Choi, Y.S., et al.: Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Eur. Radiol. 30, 3834–3842 (2020)

    Article  Google Scholar 

  26. Xiao, Z., et al.: Multiparametric MRI features predict the SYP gene expression in low-grade glioma patients: a machine learning-based radiomics analysis. Front. Oncol. 11, 663451 (2021)

    Article  Google Scholar 

  27. Lam, L.H.T., et al.: Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning. NMR Biomed. 35(11), e4792 (2022)

    Article  Google Scholar 

  28. Lam, L.H.T., et al.: A radiomics-based machine learning model for prediction of tumor mutational burden in lower-grade gliomas. Cancers 14(14), 3492 (2022)

    Article  Google Scholar 

  29. Blionas, A., et al.: Paediatric gliomas: diagnosis, molecular biology and management. Ann. Transl. Med. 6(12) (2018)

    Google Scholar 

  30. Qing, Z., et al.: Treatment response and prognosis evaluation in high-grade glioma: an imaging review based on MRI. J. Magn. Reson. Imaging 56(2), 325–340 (2022)

    Article  Google Scholar 

  31. Gunasekara, K., Dissanayake, M.B.: MRI based glioma segmentation using deep learning algorithms. In: 2019 International research conference on smart computing and systems engineering (SCSE). IEEE (2019)

    Google Scholar 

  32. Ying, Z., et al.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44(10), 5234–5243 (2017)

    Article  Google Scholar 

  33. Dong, H., et al.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  34. Perkuhn, M., et al.: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine. Investig. Radiol. 53(11), 647 (2018)

    Article  Google Scholar 

  35. Choi, Y., et al.: IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation. Eur. J. Radiol. 128, 109031 (2020)

    Article  Google Scholar 

  36. Bangalore Yogananda, C.G., et al.: Fully automated brain tumor segmentation and survival prediction of gliomas using deep learning and MRI. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 99–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_10

    Chapter  Google Scholar 

  37. Yalda, A., et al.: A knowledge-based system for brain tumor segmentation using only 3D FLAIR images. Australas. Phys. Eng. Sci. Med. 42, 529–540 (2019)

    Article  Google Scholar 

  38. Sajid, I., et al.: Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc. Res. Tech. 81(4), 419–427 (2019)

    Google Scholar 

  39. Subhashis, B., Mitra, S.: Novel volumetric sub-region segmentation in brain tumors. Front. Comput. Neurosci. 14, 3 (2020)

    Article  Google Scholar 

  40. Wu, S., et al.: Three-plane-assembled deep learning segmentation of gliomas. Radiol. Artif. Intell. 2(2), e190011 (2020)

    Article  Google Scholar 

  41. Zhou, Z., et al.: 3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads. Comput. Biol. Med. 121, 103766 (2020)

    Article  Google Scholar 

  42. Ilhan, A., Abiyev, R.: Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. Int. J. Comput. Assist. Radiol. Surg. 17(3), 589–600 (2022)

    Article  Google Scholar 

  43. Drozdzal, M., et al.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) DLMIA LABELS 2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

  44. Philippe, L., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Article  Google Scholar 

  45. Van Griethuysen, J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  46. Lucas, C., Mortezaie, G.: Analysis of mammographic microcalcifications using gray-level images and neural networks (2002)

    Google Scholar 

  47. Meenakshi, G., Dhiman, G.: A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput. Appl. 33, 1311–1328 (2021)

    Article  Google Scholar 

  48. Yang, Y., et al.: Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J. Magn. Reson. Imaging 49(5), 1263–1274 (2019)

    Article  MathSciNet  Google Scholar 

  49. Şaban, Ö., Akdemir, B.: Application of feature extraction and classification methods for histopathological image using GLCM, LBP, LBGLCM, GLRLM and SFTA. Procedia Comput. Sci. 132, 40–46 (2018)

    Article  Google Scholar 

  50. Jundong, L., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Google Scholar 

  51. Arafet, S., et al.: Adaptive feature selection in PET scans based on shared information and multi-label learning. Vis. Comput. 38, 257–277 (2022)

    Article  Google Scholar 

  52. Bharat, R., et al.: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Signal Process. Control 59, 101903 (2020)

    Article  Google Scholar 

  53. Fan, W., et al.: AutoFS: automated feature selection via diversity-aware interactive reinforcement learning. In: 2020 IEEE International Conference on Data Mining (ICDM). IEEE (2020)

    Google Scholar 

  54. Mesut, T., et al.: A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. IRBM 41(4), 212–222 (2020)

    Article  Google Scholar 

  55. Lynne, C.: Logistic regression. Medsurg Nurs. 29(5), 353–354 (2020)

    Google Scholar 

  56. Schonlau, M., Yuyan, R.: The random forest algorithm for statistical learning. Stata J. 20(1), 3–29 (2020)

    Article  Google Scholar 

  57. Nalluri, M., et al.: A scalable tree boosting system: XG boost. Int. J. Res. Stud. Sci. Eng. Technol. 7, 36–51 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Jlassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jlassi, A., Omri, A., ElBedoui, K., Barhoumi, W. (2024). Segmented Glioma Classification Using Radiomics-Based Machine Learning: A Comparative Analysis of Feature Selection Techniques. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2023. Lecture Notes in Computer Science(), vol 14546. Springer, Cham. https://doi.org/10.1007/978-3-031-55326-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55326-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55325-7

  • Online ISBN: 978-3-031-55326-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics