Skip to main content

Enhancing Cloud Data Integrity Verification Scheme with User Legitimacy Check

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2023)

Abstract

Users employ cloud servers to store data and depend on third-party audits to guarantee data integrity. However, this auditing system poses certain risks, as it may have vulnerabilities that attackers can exploit for intrusion. To address these concerns and achieve decentralization, a cloud data integrity verification scheme is proposed. This scheme is based on a verifiable random function and aims to eliminate the need for third-party auditing. Before performing data integrity verification, a blockchain smart contract is employed to calculate bilinear pairs, serving the purpose of verifying the user’s legitimacy. If the user successfully completes this verification, the integrity of the cloud data is then verified using the verifiable random function. The simulation results demonstrate that this scheme is effective in detecting the legitimacy of users and significantly reduces the computational and communication overhead associated with verifying data integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, H., Li, M., Chen, Y., et al.: Architectural protection of trusted system services for SGX enclaves in cloud computing. IEEE Trans. Cloud Comput. 9(3), 910–922 (2019)

    Article  Google Scholar 

  2. Zhang Guipeng. Research on cloud data security storage technology based on blockchain [D]. Guangdong:Guangdong University of Technology (2022(

    Google Scholar 

  3. Xu, Y., Ren, J., Zhang, Y., Zhang, C., Shen, B., Zhang, Y.: Blockchain empowered arbitrable data auditing scheme for network storage as a service. IEEE Trans. Serv. Comput. 13(2), 289–300 (2020)

    Google Scholar 

  4. Yinhao, X., Yizhen, J., Chunchi, L.: Edge computing security: state of the art and challenges. Proc. IEEE 107(8), 1608–1631 (2019)

    Article  Google Scholar 

  5. Dongdong, Y., Ruixuan, L., Yan, Z.: Blockchain-based verification framework for data integrity in edge-cloud storage. J. Parallel Distrib. Comput. 146, 1–14 (2020)

    Article  Google Scholar 

  6. Zhang, Y.: Identity-based integrity detection scheme for cloud storage. Computer Engineering. 44(3) (2018)

    Google Scholar 

  7. Xiuqing, L., Zhenkuan, P., Hequn, X.: An integrity verification scheme of cloud storage for internet-of-things mobile terminal devices. Comput. Secur. 92, 101686 (2020)

    Article  Google Scholar 

  8. Deswarte, Y., Quisquater, J., Saidane, A.: Remote integrity checking. In: The Sixth Working Conference on Integrity and Internal Control in Information Systems (IICIS) (2007)

    Google Scholar 

  9. Wutong, M., Zhang, D.: Hyperledger Fabric consensus mechanism optimization scheme. J. Autom. 47(8), 1885–1898 (2007)

    Google Scholar 

  10. Hovav, S., Brent, W.: Compact proofs of retrievability. J. Cryptol. 26(3), 442–483 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and Data Dynamics for Storage Security in Cloud Computing. In: Backes, M., Ning, P. (eds) Computer Security – ESORICS 2009. ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-04444-1_22

  12. Zheng, Z., Xie, S., Dai, H.: An overview of blockchain technology: architecture, consensus, and future Trends, pp. 557–564 (2017)

    Google Scholar 

  13. Li, J., Wu, J., Jiang, G.: Blockchain-based public auditing for big data in cloud storage. Inf. Process. Manage. 57(6), 102382 (2020)

    Article  Google Scholar 

  14. Wang, Y.: Research on data integrity auditing in cloud storage[D]. Chongqing University (2021)

    Google Scholar 

  15. Vujičić, D,, Jagodić, D., Ranđić, S.: Blockchain technology,bitcoin,and ethereum:a brief overview. In: Proceedings of the 2018 17th International Symposium on Infoteh-Jahorina, pp. 1–6 (2018).https://doi.org/10.1109/INFOTEH.2018.8345547

  16. Xiao, Y., Zhang, N., Lou, W.J., et al.: A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv. Tutorials 22(2), 1432–1465 (2020)

    Article  Google Scholar 

  17. Zheng, M., Wang, H., Liu, H., et al.: Survey on consensus algorithms of blockchain. Netinfo Secur. 7, 8–24 (2019)

    Google Scholar 

  18. Hai-yang, D., Zi-chen, L., Wei, B.: (k, n)halftone visual cryptography based on Shamir′s secret sharing. J. China Univ. Posts Telecommun. 25(2), 60–76 (2018)

    Google Scholar 

  19. Qi-feng, S., Zhao, Z., Yan-chao, Z., et al.: Survery of enterprise blockchains. J. Softw. 30(9), 2571–2592 (2019(

    Google Scholar 

  20. Yong, Y., Xiao-chun, N., Shuai, Z., et al.: Block consensus algorithms: the state of the art and future trends. Acta Automatica Sinica, 44(11), 2011–2022 (2018)

    Google Scholar 

  21. Shao, Q.F., Jin, C.Q., Zhang, Z., et al.: Blockchain: architecture and research progress Chinese. J. Comput. 41(5), 969–988 (2018)

    Google Scholar 

  22. Bo, Y.: A chameleon hash authentication tree optimisation audit for data storage security in cloud calculation. Int. J. Innovative Comput. Appl. 11(2–3), 141–146 (2020)

    Article  Google Scholar 

  23. Mehibel, N., Hamadouche, M.H.: Authenticated secret session key using elliptic curve digital signature algorithm. Secur. Priv. 4(2), e148 (2021)

    Article  Google Scholar 

  24. Khalili, M., Dakhilalian, M., Susilo, W.: Efficient chameleon hash functions in the enhanced collision resistant model. Inf. Sci. 510, 155–164 (2020)

    Article  MathSciNet  Google Scholar 

  25. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for storage security in cloud computing. In: Backes, M., Ning, P. (eds.) Computer Security – ESORICS 2009. ESORICS 2009. Lecture Notes in Computer Science, vol. 5789, pp. 355–370. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-04444-1_22

  26. Zhang, Y., Xu, C.X., Yu, S., et al.: SCLPV: secure certificateless public verification for cloud-based cyber-physical-social systems against malicious auditors. IEEE Trans. Comput. Soc. Syst. 2(4), 159–170 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, D. et al. (2024). Enhancing Cloud Data Integrity Verification Scheme with User Legitimacy Check. In: Wu, C., Chen, X., Feng, J., Wu, Z. (eds) Mobile Networks and Management. MONAMI 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-031-55471-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55471-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55470-4

  • Online ISBN: 978-3-031-55471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics