Abstract
Human activity recognition (HAR) is an essential research field that has been used in different applications including home and workplace automation, security and surveillance as well as healthcare. Starting from conventional machine learning methods to the recently developing deep learning techniques and the internet of things, significant contributions have been shown in the HAR area in the last decade. Even though several review and survey studies have been published, there is a lack of sensor-based HAR overview studies focusing on summarising the usage of wearable sensors and smart home sensors data as well as applications of HAR and deep learning techniques. Hence, we overview sensor-based HAR, discuss several important applications that rely on HAR, and highlight the most common machine learning methods that have been used for HAR. Finally, several challenges of HAR are explored that should be addressed to further improve the robustness of HAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Qi, J., Yang, P., Hanneghan, M., Tang, S., Zhou, B.: A hybrid hierarchical framework for gym physical activity recognition and measurement using wearable sensors. IEEE Internet Things J. 6(2), 1384–1393 (2018)
Aviles-Cruz, C., Rodriguez-Martinez, E., Villegas-Cortez, J., Ferreyra-Ramirez, A.: Granger-causality: an efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recogn. Lett. 125, 576–583 (2019)
Sankar, S., Srinivasan, P., Saravanakumar, R.: Internet of things based ambient assisted living for elderly people health monitoring. Res. J. Pharm. Technol. 11(9), 3900–3904 (2018)
Capela, N.A., Lemaire, E.D., Baddour, N.: Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE 10(4), e0124414 (2015)
Jung, I.Y.: A review of privacy-preserving human and human activity recognition. Int. J. Smart Sens. Intell. Syst. 13(1), 1–13 (2020)
Hamad, R.A., Kimura, M., Lundström, J.: Efficacy of imbalanced data handling methods on deep learning for smart homes environments. SN Comput. Sci. 1(4), 1–10 (2020)
Anjum, A., Ilyas, M.U.: Activity recognition using smartphone sensors. In: 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), pp. 914–919. IEEE (2013)
Hamad, R.A., Hidalgo, A.S., Bouguelia, M.-R., Estevez, M.E., Quero, J.M.: Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors. IEEE J. Biomed. Health Inform. 24(2), 387–395 (2019)
Cicirelli, G., Marani, R., Petitti, A., Milella, A., D’Orazio, T.: Ambient assisted living: a review of technologies, methodologies and future perspectives for healthy aging of population. Sensors 21(10), 3549 (2021)
Hamad, R.A., Kimura, M., Yang, L., Woo, W.L., Wei, B.: Dilated causal convolution with multi-head self attention for sensor human activity recognition. Neural Comput. Appl. 33(20), 13705–13722 (2021)
Shany, T., Redmond, S.J., Narayanan, M.R., Lovell, N.H.: Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens. J. 12(3), 658–670 (2011)
Kan, Y.-C., Chen, C.-K.: A wearable inertial sensor node for body motion analysis. IEEE Sens. J. 12(3), 651–657 (2011)
Sazonov, E.S., Fulk, G., Hill, J., Schutz, Y., Browning, R.: Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans. Biomed. Eng. 58(4), 983–990 (2010)
Mariani, B., Jiménez, M.C., Vingerhoets, F.J.G., Aminian, K.: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 60(1), 155–158 (2012)
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1
Cornacchia, M., Ozcan, K., Zheng, Y., Velipasalar, S.: A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2016)
Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)
Chen, Z., Jiang, C., Xiang, S., Ding, J., Min, W., Li, X.: Smartphone sensor-based human activity recognition using feature fusion and maximum full a posteriori. IEEE Trans. Instrum. Meas. 69(7), 3992–4001 (2019)
Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)
Lima, W.S., Souto, E., El-Khatib, K., Jalali, R., Gama, J.: Human activity recognition using inertial sensors in a smartphone: An overview. Sensors 19(14), 3213 (2019)
Zheng, Y., Wong, W.-K., Guan, X., Trost, S.: Physical activity recognition from accelerometer data using a multi-scale ensemble method. In: Twenty-Fifth IAAI Conference (2013)
Gjoreski, H., Gams, M.: Accelerometer data preparation for activity recognition. In: Proceedings of the International Multiconference Information Society, Ljubljana, Slovenia, vol. 1014, p. 1014 (2011)
Jiang, M., Shang, H., Wang, Z., Li, H., Wang, Y.: A method to deal with installation errors of wearable accelerometers for human activity recognition. Physiol. Meas. 32(3), 347 (2011)
Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)
Zhu, C., Sheng, W.: Motion-and location-based online human daily activity recognition. Pervasive Mob. Comput. 7(2), 256–269 (2011)
Siirtola, P., Röning, J.: User-independent human activity recognition using a mobile phone: offline recognition vs. real-time on device recognition. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 617–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28765-7_75
Hemalatha, C.S., Vaidehi, V.: Frequent bit pattern mining over tri-axial accelerometer data streams for recognizing human activities and detecting fall. Procedia Comput. Sci. 19, 56–63 (2013)
Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193 (2013)
Gao, L., Bourke, A.K., Nelson, J.: Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 36(6), 779–785 (2014)
Davila, J.C., Cretu, A.-M., Zaremba, M.: Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors 17(6), 1287 (2017)
Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, A.: A robust human activity recognition system using smartphone sensors and deep learning. Future Gener. Comput. Syst. 81, 307–313 (2018)
Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep learning models for real-time human activity recognition with smartphones. Mob. Netw. Appl. 25(2), 743–755 (2020)
Mekruksavanich, S., Jitpattanakul, A.: LSTM networks using smartphone data for sensor-based human activity recognition in smart homes. Sensors 21(5), 1636 (2021)
Han, C., Zhang, L., Tang, Y., Huang, W., Min, F., He, J.: Human activity recognition using wearable sensors by heterogeneous convolutional neural networks. Expert Syst. Appl. 198, 116764 (2022)
Narayanan, M.R., et al.: Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. Eng. 57(3), 534–541 (2009)
Greene, B.R., O’Donovan, A., Romero-Ortuno, R., Cogan, L., Scanaill, C.N., Kenny, R.A.: Quantitative falls risk assessment using the timed up and go test. IEEE Trans. Biomed. Eng. 57(12), 2918–2926 (2010)
Varkey, J.P., Pompili, D., Walls, T.A.: Human motion recognition using a wireless sensor-based wearable system. Pers. Ubiquit. Comput. 16(7), 897–910 (2012)
Hamad, R.A., Yang, L., Woo, W.L., Wei, B.: Cross-domain activity recognition using shared representation in sensor data. IEEE Sens. J. 22, 13273–13284 (2022)
Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., Prueckner, S.: An event-driven approach to activity recognition in ambient assisted living. In: Tscheligi, M., et al. (eds.) AmI 2009. LNCS, vol. 5859, pp. 123–132. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05408-2_16
Wang, A., Zhao, S., Zheng, C., Yang, J., Chen, G., Chang, C.-Y.: Activities of daily living recognition with binary environment sensors using deep learning: A comparative study. IEEE Sens. J. 21(4), 5423–5433 (2020)
Hamad, R.A., Järpe, E., Lundström, J.: Stability analysis of the t-SNE algorithm for human activity pattern data. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1839–1845. IEEE (2018)
Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics Inform. 33(3), 793–807 (2016)
Ordóñez, F.J., Iglesias, J.A., De Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013)
Ding, D., Cooper, R.A., Pasquina, P.F., Fici-Pasquina, L.: Sensor technology for smart homes. Maturitas 69(2), 131–136 (2011)
Hamad, R.A., Yang, L., Woo, W.L., Wei, B.: Joint learning of temporal models to handle imbalanced data for human activity recognition. Appl. Sci. 10(15), 5293 (2020)
Ogbuabor, G., La, R.: Human activity recognition for healthcare using smartphones. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, pp. 41–46 (2018)
Chelli, A., Pätzold, M.: A machine learning approach for fall detection and daily living activity recognition. IEEE Access 7, 38670–38687 (2019)
Saba, T., Rehman, A., Latif, R., Fati, S.M., Raza, M., Sharif, M.: Suspicious activity recognition using proposed deep L4-branched-ActionNet with entropy coded ant colony system optimization. IEEE Access 9, 89181–89197 (2021)
Sun, Z., et al.: SOS: real-time and accurate physical assault detection using smartphone. Peer-to-Peer Netw. Appl. 10(2), 395–410 (2017)
Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 134–139. IEEE (2019)
Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 54(4), 1–40 (2021)
Ni, Q., Hernando, A.G., de la Cruz, I.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015)
Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recognit. 108, 107561 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hamad, R.A., Woo, W.L., Wei, B., Yang, L. (2024). Overview of Human Activity Recognition Using Sensor Data. In: Panoutsos, G., Mahfouf, M., Mihaylova, L.S. (eds) Advances in Computational Intelligence Systems. UKCI 2022. Advances in Intelligent Systems and Computing, vol 1454. Springer, Cham. https://doi.org/10.1007/978-3-031-55568-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-55568-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55567-1
Online ISBN: 978-3-031-55568-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)