Skip to main content

Overview of Human Activity Recognition Using Sensor Data

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1454))

Included in the following conference series:

  • 248 Accesses

Abstract

Human activity recognition (HAR) is an essential research field that has been used in different applications including home and workplace automation, security and surveillance as well as healthcare. Starting from conventional machine learning methods to the recently developing deep learning techniques and the internet of things, significant contributions have been shown in the HAR area in the last decade. Even though several review and survey studies have been published, there is a lack of sensor-based HAR overview studies focusing on summarising the usage of wearable sensors and smart home sensors data as well as applications of HAR and deep learning techniques. Hence, we overview sensor-based HAR, discuss several important applications that rely on HAR, and highlight the most common machine learning methods that have been used for HAR. Finally, several challenges of HAR are explored that should be addressed to further improve the robustness of HAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qi, J., Yang, P., Hanneghan, M., Tang, S., Zhou, B.: A hybrid hierarchical framework for gym physical activity recognition and measurement using wearable sensors. IEEE Internet Things J. 6(2), 1384–1393 (2018)

    Article  Google Scholar 

  2. Aviles-Cruz, C., Rodriguez-Martinez, E., Villegas-Cortez, J., Ferreyra-Ramirez, A.: Granger-causality: an efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recogn. Lett. 125, 576–583 (2019)

    Article  Google Scholar 

  3. Sankar, S., Srinivasan, P., Saravanakumar, R.: Internet of things based ambient assisted living for elderly people health monitoring. Res. J. Pharm. Technol. 11(9), 3900–3904 (2018)

    Article  Google Scholar 

  4. Capela, N.A., Lemaire, E.D., Baddour, N.: Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE 10(4), e0124414 (2015)

    Article  Google Scholar 

  5. Jung, I.Y.: A review of privacy-preserving human and human activity recognition. Int. J. Smart Sens. Intell. Syst. 13(1), 1–13 (2020)

    MathSciNet  Google Scholar 

  6. Hamad, R.A., Kimura, M., Lundström, J.: Efficacy of imbalanced data handling methods on deep learning for smart homes environments. SN Comput. Sci. 1(4), 1–10 (2020)

    Article  Google Scholar 

  7. Anjum, A., Ilyas, M.U.: Activity recognition using smartphone sensors. In: 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), pp. 914–919. IEEE (2013)

    Google Scholar 

  8. Hamad, R.A., Hidalgo, A.S., Bouguelia, M.-R., Estevez, M.E., Quero, J.M.: Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors. IEEE J. Biomed. Health Inform. 24(2), 387–395 (2019)

    Article  Google Scholar 

  9. Cicirelli, G., Marani, R., Petitti, A., Milella, A., D’Orazio, T.: Ambient assisted living: a review of technologies, methodologies and future perspectives for healthy aging of population. Sensors 21(10), 3549 (2021)

    Article  Google Scholar 

  10. Hamad, R.A., Kimura, M., Yang, L., Woo, W.L., Wei, B.: Dilated causal convolution with multi-head self attention for sensor human activity recognition. Neural Comput. Appl. 33(20), 13705–13722 (2021)

    Article  Google Scholar 

  11. Shany, T., Redmond, S.J., Narayanan, M.R., Lovell, N.H.: Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens. J. 12(3), 658–670 (2011)

    Article  Google Scholar 

  12. Kan, Y.-C., Chen, C.-K.: A wearable inertial sensor node for body motion analysis. IEEE Sens. J. 12(3), 651–657 (2011)

    Article  Google Scholar 

  13. Sazonov, E.S., Fulk, G., Hill, J., Schutz, Y., Browning, R.: Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans. Biomed. Eng. 58(4), 983–990 (2010)

    Article  Google Scholar 

  14. Mariani, B., Jiménez, M.C., Vingerhoets, F.J.G., Aminian, K.: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 60(1), 155–158 (2012)

    Article  Google Scholar 

  15. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  16. Cornacchia, M., Ozcan, K., Zheng, Y., Velipasalar, S.: A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2016)

    Article  Google Scholar 

  17. Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)

    Article  Google Scholar 

  18. Chen, Z., Jiang, C., Xiang, S., Ding, J., Min, W., Li, X.: Smartphone sensor-based human activity recognition using feature fusion and maximum full a posteriori. IEEE Trans. Instrum. Meas. 69(7), 3992–4001 (2019)

    Article  Google Scholar 

  19. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

    Article  Google Scholar 

  20. Lima, W.S., Souto, E., El-Khatib, K., Jalali, R., Gama, J.: Human activity recognition using inertial sensors in a smartphone: An overview. Sensors 19(14), 3213 (2019)

    Article  Google Scholar 

  21. Zheng, Y., Wong, W.-K., Guan, X., Trost, S.: Physical activity recognition from accelerometer data using a multi-scale ensemble method. In: Twenty-Fifth IAAI Conference (2013)

    Google Scholar 

  22. Gjoreski, H., Gams, M.: Accelerometer data preparation for activity recognition. In: Proceedings of the International Multiconference Information Society, Ljubljana, Slovenia, vol. 1014, p. 1014 (2011)

    Google Scholar 

  23. Jiang, M., Shang, H., Wang, Z., Li, H., Wang, Y.: A method to deal with installation errors of wearable accelerometers for human activity recognition. Physiol. Meas. 32(3), 347 (2011)

    Article  Google Scholar 

  24. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  25. Zhu, C., Sheng, W.: Motion-and location-based online human daily activity recognition. Pervasive Mob. Comput. 7(2), 256–269 (2011)

    Article  Google Scholar 

  26. Siirtola, P., Röning, J.: User-independent human activity recognition using a mobile phone: offline recognition vs. real-time on device recognition. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 617–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28765-7_75

    Chapter  Google Scholar 

  27. Hemalatha, C.S., Vaidehi, V.: Frequent bit pattern mining over tri-axial accelerometer data streams for recognizing human activities and detecting fall. Procedia Comput. Sci. 19, 56–63 (2013)

    Article  Google Scholar 

  28. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193 (2013)

    Article  Google Scholar 

  29. Gao, L., Bourke, A.K., Nelson, J.: Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 36(6), 779–785 (2014)

    Article  Google Scholar 

  30. Davila, J.C., Cretu, A.-M., Zaremba, M.: Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors 17(6), 1287 (2017)

    Article  Google Scholar 

  31. Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, A.: A robust human activity recognition system using smartphone sensors and deep learning. Future Gener. Comput. Syst. 81, 307–313 (2018)

    Article  Google Scholar 

  32. Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep learning models for real-time human activity recognition with smartphones. Mob. Netw. Appl. 25(2), 743–755 (2020)

    Article  Google Scholar 

  33. Mekruksavanich, S., Jitpattanakul, A.: LSTM networks using smartphone data for sensor-based human activity recognition in smart homes. Sensors 21(5), 1636 (2021)

    Article  Google Scholar 

  34. Han, C., Zhang, L., Tang, Y., Huang, W., Min, F., He, J.: Human activity recognition using wearable sensors by heterogeneous convolutional neural networks. Expert Syst. Appl. 198, 116764 (2022)

    Article  Google Scholar 

  35. Narayanan, M.R., et al.: Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. Eng. 57(3), 534–541 (2009)

    Article  Google Scholar 

  36. Greene, B.R., O’Donovan, A., Romero-Ortuno, R., Cogan, L., Scanaill, C.N., Kenny, R.A.: Quantitative falls risk assessment using the timed up and go test. IEEE Trans. Biomed. Eng. 57(12), 2918–2926 (2010)

    Article  Google Scholar 

  37. Varkey, J.P., Pompili, D., Walls, T.A.: Human motion recognition using a wireless sensor-based wearable system. Pers. Ubiquit. Comput. 16(7), 897–910 (2012)

    Article  Google Scholar 

  38. Hamad, R.A., Yang, L., Woo, W.L., Wei, B.: Cross-domain activity recognition using shared representation in sensor data. IEEE Sens. J. 22, 13273–13284 (2022)

    Article  Google Scholar 

  39. Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., Prueckner, S.: An event-driven approach to activity recognition in ambient assisted living. In: Tscheligi, M., et al. (eds.) AmI 2009. LNCS, vol. 5859, pp. 123–132. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05408-2_16

    Chapter  Google Scholar 

  40. Wang, A., Zhao, S., Zheng, C., Yang, J., Chen, G., Chang, C.-Y.: Activities of daily living recognition with binary environment sensors using deep learning: A comparative study. IEEE Sens. J. 21(4), 5423–5433 (2020)

    Article  Google Scholar 

  41. Hamad, R.A., Järpe, E., Lundström, J.: Stability analysis of the t-SNE algorithm for human activity pattern data. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1839–1845. IEEE (2018)

    Google Scholar 

  42. Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics Inform. 33(3), 793–807 (2016)

    Article  Google Scholar 

  43. Ordóñez, F.J., Iglesias, J.A., De Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013)

    Article  Google Scholar 

  44. Ding, D., Cooper, R.A., Pasquina, P.F., Fici-Pasquina, L.: Sensor technology for smart homes. Maturitas 69(2), 131–136 (2011)

    Article  Google Scholar 

  45. Hamad, R.A., Yang, L., Woo, W.L., Wei, B.: Joint learning of temporal models to handle imbalanced data for human activity recognition. Appl. Sci. 10(15), 5293 (2020)

    Article  Google Scholar 

  46. Ogbuabor, G., La, R.: Human activity recognition for healthcare using smartphones. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, pp. 41–46 (2018)

    Google Scholar 

  47. Chelli, A., Pätzold, M.: A machine learning approach for fall detection and daily living activity recognition. IEEE Access 7, 38670–38687 (2019)

    Article  Google Scholar 

  48. Saba, T., Rehman, A., Latif, R., Fati, S.M., Raza, M., Sharif, M.: Suspicious activity recognition using proposed deep L4-branched-ActionNet with entropy coded ant colony system optimization. IEEE Access 9, 89181–89197 (2021)

    Article  Google Scholar 

  49. Sun, Z., et al.: SOS: real-time and accurate physical assault detection using smartphone. Peer-to-Peer Netw. Appl. 10(2), 395–410 (2017)

    Article  Google Scholar 

  50. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 134–139. IEEE (2019)

    Google Scholar 

  51. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 54(4), 1–40 (2021)

    Google Scholar 

  52. Ni, Q., Hernando, A.G., de la Cruz, I.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015)

    Article  Google Scholar 

  53. Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recognit. 108, 107561 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeen Ali Hamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamad, R.A., Woo, W.L., Wei, B., Yang, L. (2024). Overview of Human Activity Recognition Using Sensor Data. In: Panoutsos, G., Mahfouf, M., Mihaylova, L.S. (eds) Advances in Computational Intelligence Systems. UKCI 2022. Advances in Intelligent Systems and Computing, vol 1454. Springer, Cham. https://doi.org/10.1007/978-3-031-55568-8_32

Download citation

Publish with us

Policies and ethics