Skip to main content

Minimum-Width Double-Slabs and Widest Empty Slabs in High Dimensions

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Abstract

A slab in d-dimensional space \(\mathbb {R}^d\) is the set of points enclosed by two parallel hyperplanes. We consider the problem of finding an optimal pair of parallel slabs, called a double-slab, that covers a given set P of n points in \(\mathbb {R}^d\). We address two optimization problems in \(\mathbb {R}^d\) for any fixed dimension \(d\geqslant 3\): the minimum-width double-slab problem, in which one wants to minimize the maximum width of the two slabs of the resulting double-slab, and the widest empty slab problem, in which one wants to maximize the gap between the two slabs. Our results include the first nontrivial exact algorithms that solve the former problem for \(d\geqslant 3\) and the latter problem for \(d\geqslant 4\).

C. Chung, T. Ahn, and H.-K. Ahn were supported by the Institute of Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic Geometric Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH)). T. Ahn, S.W. Bae, and C. Chung were supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00251168).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the relative interior of a 0-flat (a point) is by definition the point itself.

  2. 2.

    In fact they construct a vertical decomposition of the entire arrangement.

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51(4), 606–635 (2004)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems. Discr. Comput. Geometry 16(4), 317–337 (1996)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, P.K.: Range searching. In: Goodman, J., O’Rourke, J., Tóth, C. (eds.) Handbook of Discrete and Computational Geometry, chap. 40, pp. 1057–1092. CRC Press, 3rd edn. (2018)

    Google Scholar 

  4. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. J. Algorithms 46(2), 115–139 (2003)

    Article  MathSciNet  Google Scholar 

  5. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for a \(k\)-line center. Algorithmica 42(3), 221–230 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bae, S.W.: Minimum-width double-strip and parallelogram annulus. Theor. Comput. Sci. 833, 133–146 (2020)

    Article  MathSciNet  Google Scholar 

  7. de Berg, M., Dobrindt, K., Schwarzkopf, O.: On lazy randomized incremental construction. Discr. Comput. Geometry 14, 261–286 (1995)

    Article  MathSciNet  Google Scholar 

  8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  Google Scholar 

  9. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002)

    Article  MathSciNet  Google Scholar 

  10. Chattopadhyay, S., Das, P.: The \(k\)-dense corridor problems. Pattern Recogn. Lett. 11, 463–469 (1990)

    Article  Google Scholar 

  11. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discr. Comput. Geometry 9(2), 145–158 (1993)

    Article  MathSciNet  Google Scholar 

  12. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discr. Comput. Geometry 10, 377–409 (1993)

    Article  MathSciNet  Google Scholar 

  13. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Diameter, width, closest line pair and parametric searching. Discr. Comput. Geometry 10, 183–196 (1993)

    Article  MathSciNet  Google Scholar 

  14. Chazelle, B., Friedman, J.: Point location among hyperplanes and unidirectional ray-shooting. Comput. Geometry: Theor. Appl. 4(2), 53–62 (1994)

    Article  MathSciNet  Google Scholar 

  15. Chung, C., Ahn, T., Bae, S.W., Ahn, H.K.: Parallel line centers with guaranteed separation. In: Proceedings of the 35th Canadian Conference on Computational Geometry (CCCG 2023), pp. 153–160 (2023)

    Google Scholar 

  16. Church, R.L., Drezner, Z.: Review of obnoxious facilities location problems. Comput. Oper. Res. 138, 105468 (2022)

    Article  MathSciNet  Google Scholar 

  17. Das, A.K., Das, S., Mukherjee, J.: Approximation algorithms for orthogonal line centers. Discret. Appl. Math. 338, 69–76 (2023)

    Article  MathSciNet  Google Scholar 

  18. Díaz-Báñez, J.M., López, M.A., Sellarés, J.A.: Locating an obnoxious plane. Eur. J. Oper. Res. 173(2), 556–564 (2006)

    Article  MathSciNet  Google Scholar 

  19. Edelsbrunner, H., Seidel, R., Sharir, M.: On the zone theorem for hyperplane arrangements. SIAM J. Comput. 22(2), 418–429 (1993)

    Article  MathSciNet  Google Scholar 

  20. Glozman, A., Kedem, K., Shpitalnik, G.: On some geometric selection and optimization problems via sorted matrices. Comput. Geom.: Theory Appl. 11(1), 17–28 (1998)

    Google Scholar 

  21. Halperin, D., Sharir, M.: Arrangements. In: Goodman, J., O’Rourke, J., Tóth, C. (eds.) Handbook of Discrete and Computational Geometry, chap. 28, pp. 723–762. CRC Press, 3rd edn. (2018)

    Google Scholar 

  22. Houle, M.E., Maciel, A.: Finding the widest empty corridor through a set of points. Snapshots of computational and discrete geometry, pp. 210–213 (1988)

    Google Scholar 

  23. Houle, M., Toussaint, G.: Computing the width of a set. In: Proc. 1st ACM Sympos. Comput. Geom. (SoCG 1985), pp. 1–7 (1985)

    Google Scholar 

  24. Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. Comput. 1(2), 231–245 (1994)

    MathSciNet  Google Scholar 

  25. Jaromczyk, J., Kowaluk, M.: The two-line center problem from a polar view: a new algorithm and data structure. In: Proc. 4th International Workshop Algorithmic Data Structure (WADS 1995). Lecture Notes Comput. Sci., vol. 955, pp. 13–25 (1995)

    Google Scholar 

  26. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discr. Comput. Geometry 10, 157–182 (1993)

    Article  MathSciNet  Google Scholar 

  27. Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discr. Comput. Geometry 10, 215–232 (1993)

    Article  MathSciNet  Google Scholar 

  28. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)

    Article  MathSciNet  Google Scholar 

  29. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer New York, New York, NY (1985). https://doi.org/10.1007/978-1-4612-1098-6

    Book  Google Scholar 

  30. Shin, C.S., Shin, S.Y., Chwa, K.Y.: The widest \(k\)-dense corridor problems. Inf. Process. Lett. 68(1), 25–31 (1998)

    Article  MathSciNet  Google Scholar 

  31. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE MELECON (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahn, T., Chung, C., Ahn, HK., Bae, S.W., Cheong, O., Yoon, S.D. (2024). Minimum-Width Double-Slabs and Widest Empty Slabs in High Dimensions. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14578. Springer, Cham. https://doi.org/10.1007/978-3-031-55598-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55598-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55597-8

  • Online ISBN: 978-3-031-55598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics