Skip to main content

Total Domination, Separated-Cluster, CD-Coloring: Algorithms and Hardness

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14578))

Included in the following conference series:

  • 103 Accesses

Abstract

Domination and coloring are two classic problems in graph theory. In this paper, our major focus is on the CD-coloring problem, which incorporates the flavors of both domination and coloring in it. Let G be an undirected graph. A proper vertex coloring of G is said to be a cd-coloring, if each color class has a dominating vertex in G. The minimum integer k for which there exists a cd-coloring of G using k colors is called the cd-chromatic number of G, denoted as \({{\chi }_{cd}}(G)\). A set \(S\subseteq V(G)\) is said to be a total dominating set, if any vertex in G has a neighbor in S. The total domination number of G, denoted as \(\gamma \)\(_t(G)\), is defined to be the minimum integer k such that G has a total dominating set of size k. A set \(S\subseteq V(G)\) is said to be a separated-cluster (also known as sub-clique) if no two vertices in S lie at a distance exactly 2 in G. The separated-cluster number of G, denoted as \({\omega _{s}}(G)\), is defined to be the maximum integer k such that G has a separated-cluster of size k.

In this paper, we contribute to the literature connecting CD-coloring with the problems, Total Domination and Separated-Cluster. For any graph G, we have \({{\chi }_{cd}}(G)\ge \gamma _t(G)\) and \({{\chi }_{cd}}(G)\ge {\omega _{s}}(G)\). First, we explore the connection of CD-Coloring problem to the well-known problem Total Domination. Note that Total Domination is known to be NP-Complete for triangle-free 3-regular graphs. We generalize this result by proving that both the problems CD-Coloring and Total Domination are NP-Complete, and do not admit any subexponential-time algorithms on triangle-free d-regular graphs, for each fixed integer \(d\ge 3\), assuming the Exponential Time Hypothesis. We also study the relationship between the parameters \({{\chi }_{cd}}(G)\) and \({\omega _{s}}(G)\). Analogous to the well-known notion of ‘perfectness’, here we introduce the notion of ‘cd-perfectness’. We prove a sufficient condition for a graph G to be cd-perfect (i.e. \({{\chi }_{cd}}(H)= {\omega _{s}}(H)\), for any induced subgraph H of G). Our sufficient condition is also necessary for certain graph classes (like triangle-free graphs). This unified approach of ‘cd-perfectness’ has several exciting consequences. In particular, it is interesting to note that the same framework can be used as a tool to derive both positive and negative results concerning the algorithmic complexity of CD-coloring and Separated-Cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals Math. 164(1), 51–229 (2006)

    Google Scholar 

  2. Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings of graphs. Graphs Comb. 31(3), 713–727 (2015)

    Article  MathSciNet  Google Scholar 

  3. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On the complexity of cd-coloring of graphs. Discret. Appl. Math. 280, 171–185 (2020)

    Article  MathSciNet  Google Scholar 

  4. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of trees and co-bipartite graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 209–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9_16

  5. Banik, A., Kasthurirangan, P.N., Raman, V.: Dominator coloring and CD coloring in almost cluster graphs. In: Morin, P., Suri, S. (eds.) WADS 2023. LNCS, vol. 14079, pp. 106–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38906-1_8

  6. Krithika, R., Rai, A., Saurabh, S., Tale, P.: Parameterized and exact algorithms for class domination coloring. Discret. Appl. Math. 291, 286–299 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.H.: The dominated coloring problem and its application. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 132–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_10

  8. Klavžar, S., Tavakoli, M.: Dominated and dominator colorings over (edge) corona and hierarchical products. Appl. Math. Comput. 390, 125647 (2021)

    Article  MathSciNet  Google Scholar 

  9. Hoppen, C., Mansan, G.: Total domination in regular graphs. Electron. Notes Theor. Comput. Sci. 346, 523–533 (2019)

    Google Scholar 

  10. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013)

    Google Scholar 

  11. Zhu, J.: Approximation for minimum total dominating set. In: ICIS (2009)

    Google Scholar 

  12. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004)

    Article  MathSciNet  Google Scholar 

  13. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-chromatic number and its complexity. In: Gaur, D., Narayanaswamy, N.S. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 10156, pp. 344–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_30

  14. Chellali, M., Volkmann, L.: Relations between the lower domination parameters and the chromatic number of a graph. Discret. Math. 274(1–3), 1–8 (2004)

    Article  MathSciNet  Google Scholar 

  15. Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs Comb. 28(1), 97–107 (2012)

    Article  MathSciNet  Google Scholar 

  16. Mycielski, J.: Sur le coloriage des graphs. In: Colloquium Mathematicae (1955)

    Google Scholar 

  17. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of \({\rm P}_{5}\),\({\rm K}_{4}\)-free chordal graphs. In: CALDAM (2022)

    Google Scholar 

  18. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  19. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

  20. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)

    Article  MathSciNet  Google Scholar 

  21. Paul, S., Pal, M., Pal, A.: A linear time algorithm to compute square of interval graphs and their colouring. AKCE Int. J. Graphs Comb. 13(1), 54–64 (2016)

    Article  MathSciNet  Google Scholar 

  22. Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) Graph-Theoretic Concepts in Computer Science, pp. 254–262. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_23

  23. Poljak, S.: A note on stable sets and colorings of graphs. In: Commentationes Mathematicae Universitatis Carolinae, pp. 307–309 (1974)

    Google Scholar 

  24. Chiarelli, N., Martínez-Barona, B., Milanič, M., Monnot, J., Muršič, P.: Strong cliques in diamond-free graphs. Theoret. Comput. Sci. 858, 49–63 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhanyamol Antony , L. Sunil Chandran , Ankit Gayen , Shirish Gosavi or Dalu Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antony, D., Chandran, L.S., Gayen, A., Gosavi, S., Jacob, D. (2024). Total Domination, Separated-Cluster, CD-Coloring: Algorithms and Hardness. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14578. Springer, Cham. https://doi.org/10.1007/978-3-031-55598-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55598-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55597-8

  • Online ISBN: 978-3-031-55598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics