Skip to main content

Max-SAT with Cardinality Constraint Parameterized by the Number of Clauses

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Abstract

Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula \(\varPhi \) on n variables, positive integers kt, the goal is to find an assignment \(\beta \) with at most k variables set to true (also called a weight k-assignment) such that the number of clauses satisfied by \(\beta \) is at least t. The problem is known to be \(\textsf{W}[2]\)-hard with respect to the parameter k. In this paper, we study the problem with respect to the parameter t. The special case of CC-Max-SAT, when all the clauses contain only positive literals (known as Maximum Coverage), is known to admit a \(2^{\mathcal {O}(t)}n^{\mathcal {O}(1)}\) algorithm. We present a \(2^{\mathcal {O}(t)}n^{\mathcal {O}(1)}\) algorithm for the general case, CC-Max-SAT. We further study the problem through the lens of kernelization. Since Maximum Coverage does not admit polynomial kernel with respect to the parameter t, we focus our study on \(K_{d,d}\)-free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes \(K_{d,d}\) as a subgraph). Recently, in [Jain et al., SODA 2023], an \(\mathcal {O}(dt^{d+1})\) kernel has been designed for the Maximum Coverage problem on \(K_{d,d}\)-free incidence graphs. We extend this result to Max-SAT on \(K_{d,d}\)-free formulas and design a \(\mathcal {O}(d4^{d^2}t^{d+1})\) kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Choudhary, P., Jain, P., Kanesh, L., Sahlot, V., Saurabh, S.: Hitting and covering partially. In: COCOON, pp. 751–763 (2018)

    Google Scholar 

  2. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331 (2003). https://doi.org/10.1016/S0020-0190(02)00434-9

  3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  4. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and ids. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Google Scholar 

  5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/285055.285059

  6. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501–520 (2007). https://doi.org/10.1007/s00224-007-1309-3

  7. Jain, P., Kanesh, L., Panolan, F., Saha, S., Sahu, A., Saurabh, S., Upasana, A.: Parameterized approximation scheme for biclique-free max k-weight SAT and max coverage. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, 22–25 January 2023, pp. 3713–3733. SIAM (2023)

    Google Scholar 

  8. Lokshtanov, D., Panolan, F., Ramanujan, M.S.: Backdoor sets on nowhere dense SAT. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 91:1–91:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.91

  9. Manurangsi, P.: Tight running time lower bounds for strong inapproximability of maximum k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5-8 January 2020, pp. 62–81. SIAM (2020). https://doi.org/10.1137/1.9781611975994.5

  10. Muise, C.J., Beck, J.C., McIlraith, S.A.: Optimal partial-order plan relaxation via maxsat. J. Artif. Intell. Res. 57, 113–149 (2016). https://doi.org/10.1613/jair.5128

  11. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pp. 182–191. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492475

  12. Skowron, P., Faliszewski, P.: Chamberlin-courant rule with approval ballots: approximating the maxcover problem with bounded frequencies in FPT time. J. Artif. Intell. Res. 60, 687–716 (2017). https://doi.org/10.1613/jair.5628

  13. Sviridenko, M.: Best possible approximation algorithm for MAX SAT with cardinality constraint. Algorithmica 30(3), 398–405 (2001)

    Article  MathSciNet  Google Scholar 

  14. Telle, J.A., Villanger, Y.: FPT algorithms for domination in sparse graphs and beyond. Theor. Comput. Sci. 770, 62–68 (2019). https://doi.org/10.1016/j.tcs.2018.10.030

  15. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 22-26 July 2012, Toronto, Ontario, Canada, pp. 1846–1852. AAAI Press (2012). https://doi.org/10.1609/aaai.v26i1.8373

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, P. et al. (2024). Max-SAT with Cardinality Constraint Parameterized by the Number of Clauses. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics