Skip to main content

Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14579))

Included in the following conference series:

  • 66 Accesses

Abstract

Cellular automata are synchronous discrete dynamical systems used to describe complex dynamic behaviors. The dynamic is based on local interactions between the components, these are defined by a finite graph with an initial node coloring with two colors. In each step, all nodes change their current color synchronously to the least/most frequent color in their neighborhood and in case of a tie, keep their current color. After a finite number of rounds these systems either reach a fixed point or enter a 2-cycle. The problem of counting the number of fixed points for cellular automata is #P-complete. In this paper we consider cellular automata defined by a tree. We propose an algorithm with run-time \(O(n\varDelta )\) to count the number of fixed points, here \(\varDelta \) is the maximal degree of the tree. We also prove upper and lower bounds for the number of fixed points. Furthermore, we obtain corresponding results for pure cycles, i.e., instances where each node changes its color in every round. We provide examples demonstrating that the bounds are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agur, Z.: Fixed points of majority rule cellular automata with application to plasticity and precision of the immune system. Complex Syst. 5(3), 351–357 (1991)

    Google Scholar 

  2. Agur, Z., Fraenkel, A., Klein, S.: The number of fixed points of the majority rule. Discret. Math. 70(3), 295–302 (1988)

    Article  MathSciNet  Google Scholar 

  3. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inform. 9, 151–160 (1998)

    Google Scholar 

  4. Aledo, J.A., Diaz, L.G., Martinez, S., Valverde, J.C.: Enumerating periodic orbits in sequential dynamical systems over graphs. J. Comput. Appl. Math. 405, 113084 (2022)

    Article  MathSciNet  Google Scholar 

  5. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70(5), 1398 (2008)

    Article  MathSciNet  Google Scholar 

  6. Aracena, J., Richard, A., Salinas, L.: Maximum number of fixed points in and-or-not networks. J. Comput. Syst. Sci. 80(7), 1175–1190 (2014)

    Article  MathSciNet  Google Scholar 

  7. Barrett, C., et al.: Predecessor existence problems for finite discrete dynamical systems. Theoret. Comput. Sci. 386(1–2), 3–37 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bridoux, F., Durbec, A., Perrot, K., Richard, A.: Complexity of fixed point counting problems in Boolean networks. J. Comput. Syst. Sci. 126, 138–164 (2022)

    Article  MathSciNet  Google Scholar 

  9. Goles, E., Olivos, J.: Periodic behaviour of generalized threshold functions. Discret. Math. 30(2), 187–189 (1980)

    Article  MathSciNet  Google Scholar 

  10. Irons, D.: Improving the efficiency of attractor cycle identification in Boolean networks. Physica D 217(1), 7–21 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kauffman, S., et al.: The origins of order: Self-organization and selection in evolution. Oxford University Press, USA (1993)

    Book  Google Scholar 

  12. Královič, R.: On majority voting games in trees. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 282–291. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45627-9_25

    Chapter  Google Scholar 

  13. Mezzini, M., Pelayo, F.L.: An algorithm for counting the fixed point orbits of an and-or dynamical system with symmetric positive dependency graph. Mathematics 8(9), 1611 (2020)

    Article  Google Scholar 

  14. Mishra, S., Rao, S.: Minimum monopoly in regular and tree graphs. Discret. Math. 306(14), 1586–1594 (2006). https://doi.org/10.1016/j.disc.2005.06.036

    Article  MathSciNet  Google Scholar 

  15. Moran, G.: The r-majority vote action on 0–1 sequences. Discr. Math. 132(1–3), 145–174 (1994)

    Article  MathSciNet  Google Scholar 

  16. Nakar, Y., Ron, D.: The structure of configurations in one-dimensional majority cellular automata: from cell stability to configuration periodicity. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds.) 15th International Conference on Cellular Automata. LNCS, vol. 13402, pp. 63–72. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14926-9_6

  17. Papp, P., Wattenhofer, R.: Stabilization time in minority processes. In: 30\(^{th}\) International Symposium on Algorithms & Computation. LIPIcs, vol. 149, pp. 43:1–43:19 (2019)

    Google Scholar 

  18. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoret. Comput. Sci. 282(2), 231–257 (2002)

    Article  MathSciNet  Google Scholar 

  19. Poljak, S., Sura, M.: On periodical behaviour in societies with symmetric influences. Combinatorica 3(1), 119–121 (1983)

    Article  MathSciNet  Google Scholar 

  20. Rouquier, J., Regnault, D., Thierry, E.: Stochastic minority on graphs. Theoret. Comput. Sci. 412(30), 3947–3963 (2011)

    Article  MathSciNet  Google Scholar 

  21. Tošić, P.T., Agha, G.A.: On computational complexity of counting fixed points in symmetric boolean graph automata. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 191–205. Springer, Heidelberg (2005). https://doi.org/10.1007/11560319_18

    Chapter  Google Scholar 

  22. Turau, V.: Fixed points and 2-cycles of synchronous dynamic coloring processes on trees. In: Parter, M. (eds.) 29\(^{th}\) International Colloquium on Structural Information and Communication Complexity - Sirocco. pp. 265–282. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9_15

  23. Turau, V.: Counting Problems in Trees, with Applications to Fixed Points of Cellular Automata. arXiv preprint arXiv:2312.13769 (2023)

  24. Veliz-Cuba, A., Laubenbacher, R.: On the computation of fixed points in Boolean networks. J. Appl. Math. Comput. 39, 145–153 (2012)

    Article  MathSciNet  Google Scholar 

  25. Zehmakan, A.: On the Spread of Information Through Graphs. Ph.D. thesis, ETH Zürich (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Turau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turau, V. (2024). Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics