Skip to main content

Directed Ear Anonymity

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14579))

Included in the following conference series:

  • 79 Accesses

Abstract

We define and study a new structural parameter for directed graphs, which we call ear anonymity. Our parameter aims to generalize the useful properties of funnels to larger digraph classes. In particular, funnels are exactly the acyclic digraphs with ear anonymity one. We prove that computing the ear anonymity of a digraph is NP-hard and that it can be solved in \(\mathcal {O}(m(n + m))\)-time on acyclic digraphs (where \(n\) is the number of vertices and \(m\) is the number of arcs in the input digraph). It remains open where exactly in the polynomial hierarchy the problem of computing ear anonymity lies, however for a related problem we manage to show \(\varSigma _2^p\)-completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Maximal with respect to the subgraph relation.

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  2. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer Science & Business Media (2008)

    Google Scholar 

  3. Bodlaender, H.L.: Treewidth: structure and algorithms. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_3

    Chapter  Google Scholar 

  4. Cáceres, M.: Parameterized algorithms for string matching to dags: funnels and beyond. In: Bulteau, L., Lipták, Z. (eds.) 34th Annual Symposium on Combinatorial Pattern Matching, CPM 2023, 26–28 June 2023, Marne-la-Vallée, France. LIPIcs, vol. 259, pp. 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.CPM.2023.7

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition, chap. 16, pp. 370–404. The MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3), 77–114 (2000). https://doi.org/10.1016/S0166-218X(99)00184-5

    Article  MathSciNet  Google Scholar 

  8. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980). https://doi.org/10.1016/0304-3975(80)90009-2

    Article  MathSciNet  Google Scholar 

  11. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.: Digraph width measures in parameterized algorithmics. Discret. Appl. Math. 168, 88–107 (2014). https://doi.org/10.1016/j.dam.2013.10.038

    Article  MathSciNet  Google Scholar 

  12. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory, Ser. B 116, 250–286 (2016). https://doi.org/10.1016/j.jctb.2015.09.001

  13. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Combinat. Theory, Series B 82(1), 138–154 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kawarabayashi, K.I., Kreutzer, S.: The directed grid theorem. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 655–664 (2015)

    Google Scholar 

  15. Khan, S., Kortelainen, M., Cáceres, M., Williams, L., Tomescu, A.I.: Improving RNA assembly via safety and completeness in flow decompositions. J. Comput. Biol. 29(12), 1270–1287 (2022). https://doi.org/10.1089/CMB.2022.0261

    Article  MathSciNet  Google Scholar 

  16. Milani, M.G.: A polynomial kernel for funnel arc deletion set. Algorithmica, pp. 1–21 (2022)

    Google Scholar 

  17. Milani, M.G., Molter, H., Niedermeier, R., Sorge, M.: Efficient algorithms for measuring the funnel-likeness of dags. J. Comb. Optim. 39(1), 216–245 (2020)

    Article  MathSciNet  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

  19. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a compendium. SIGACT News 33(3), 32–49 (2002)

    Google Scholar 

  20. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic graphs. SIAM J. Discret. Math. 24(1), 146–157 (2010)

    Article  MathSciNet  Google Scholar 

  21. Umans, C.: The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci. 63(4), 597–611 (2001). https://doi.org/10.1006/jcss.2001.1775

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

An anonymous reviewer provided useful insights which helped improve the running time of the algorithms in Lemma 4 and Theorems 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Garlet Milani .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milani, M.G. (2024). Directed Ear Anonymity. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics