Skip to main content

Type-2 Mamdani Fuzzy System Optimization for a Classification Ensemble with Black Widow Optimizer

  • Chapter
  • First Online:
New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1149))

  • 177 Accesses

Abstract

Ensemble models perform classification on data using multiple models combined and unified to a single output. An important part of the ensemble is the combination or aggregation process. Even so the design of the aggregator for each ensemble could be very different depending on the problem. For this case, a proposed aggregation algorithm combines two classification submodels using a Mamdani fuzzy system. Depending on the data to learn, the fuzzy system could be designed differently. To solve this, we applied a Bio-inspired optimization algorithm, the Black Widow Optimizer, to adjust the fuzzy system into the data the ensemble learns. Adjustment to the problem is done by obtaining the best fuzzy system parameters including membership function points, type of function and optimizing the fuzzy rules. The optimization is compared with other optimization algorithms and experiments for the ensemble are done on two classification datasets of medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N.: Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 115, 105151 (2022)

    Article  Google Scholar 

  2. Chen, H., Zhang, Z., Huang, S., Hu, J., Ni, W., Liu, J.: TextCNN-based ensemble learning model for Japanese Text Multi-classification. Comput. Electr. Eng., 109(Part B), 108751 (2023)

    Google Scholar 

  3. Mohammed, A., Kora, R.: A comprehensive review on ensemble deep learning: Opportunities and challenges. J King Saud Univ – Comput Inf Sci, 35(2), 757–774 (2023)

    Google Scholar 

  4. Ouifak, H., Idri, A.: Application of neuro-fuzzy ensembles across domains: A systematic review of the two last decades (2000–2022). Eng. Appl. Artif. Intell. 124, 106582 (2023)

    Article  Google Scholar 

  5. Mendel, J.M.: Type-2 fuzzy sets and systems: an Overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)

    Article  Google Scholar 

  6. Ding, W., Wang, H., Huang, J., Ju, H., Geng, Y., Lin, C., Pedrycz, W.: FTransCNN: Fusion Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation. Information Fusion 99, 101880 (2023)

    Article  Google Scholar 

  7. Calli, E., Sogancioglu, E., Ginneken, B.V., Leeuwen, K.G.V., Murphy, K.: Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 72, 102125 (2021)

    Article  Google Scholar 

  8. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)

    Article  Google Scholar 

  9. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, (1975)

    Google Scholar 

  10. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  11. Ganjeh-Alamdari, M., Alikhani, R., Perfilieva, I.: Fuzzy logic approach in salt and pepper noise. Comput. Electr. Eng. 102, 108264 (2022)

    Article  Google Scholar 

  12. Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1, 89–100 (1989)

    Article  Google Scholar 

  13. Rulong, X., Qiang, W., Lei, S., Lei, C.: Design of multi-robot path planning system based on hierarchical fuzzy control. Procedia Engineering 15, 235–239 (2011)

    Article  Google Scholar 

  14. Ouifak, H., Idri, A.: On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis. Scientific African 20, e01610 (2023)

    Article  Google Scholar 

  15. Meng, X., Li, H., Philip Chen, C.L.: A two-stage Bayesian learning-based probabilistic fuzzy interpreter for uncertainty modeling. Appl. Soft Comput., 131, 109786 (2022)

    Google Scholar 

  16. Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J.: A comprehensive review on type 2 fuzzy logic applications: Past, present and future. Eng. Appl. Artif. Intell. 95, 103916 (2020)

    Article  Google Scholar 

  17. Ansarian, A., Mahmoodabadi, M.J.: Multi-objective optimal designo f a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system. Aerosp. Sci. Technol. 141, 108541 (2023)

    Article  Google Scholar 

  18. Haddadnia, J., Faez, K., Ahmadi, M.: A fuzzy learning algorithm for radial basis function neural network with application in human face recognition. Pattern Recogn. 36(5), 1187–1202 (2003)

    Article  Google Scholar 

  19. Olivas, F., Valdez, F., Castillo, O., Gonzales, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)

    Article  Google Scholar 

  20. Das, A.K., Ghosh, S., Thunder, S., Dutta, R., Agarwal, S., Chakrabarti, A.: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl., 24, 1111–1124 (2021)

    Google Scholar 

  21. Gour, M., Jain, S.: Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern. Biomed. Eng. 42, 27–41 (2022)

    Article  Google Scholar 

  22. Varela-Santos, S., & Melin, P.: Classification of X-ray images for pneumonia detection using texture features and neural networks. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.), Intuitionistic and Type-2 fuzzy logic enhancements in neural and optimization algorithms: theory and applications. studies in computational intelligence, vol 862. Springer, Cham (2020)

    Google Scholar 

  23. Kermany, D., Goldbaum, M., Cai, W.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2014)

    Article  Google Scholar 

  24. Devi Bodapati, J., Rohith, V.N.: ChxCapsNet: Deep capsule network with transfer learning for evaluation pneumonia in pediatric chest radiographs. Measurement, 188, 110491 (2022)

    Google Scholar 

  25. Chowdhury, M.E.H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B., Islam, K.R., Khan, M.S., Iqbal, A., Emadi, N.A., Reaz, M.B.I., Islam, M.T.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)

    Article  Google Scholar 

  26. Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S.B.A., Islam, M.T., Maadeed, S.A., Zughaier, S.M., Khan, M.S., Chowdhurry, M.E.H.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 132, 104319 (2021)

    Article  Google Scholar 

  27. Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox, Transactions on computational science I, 104–114. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79299-4_5

  28. Melin, P., Castillo, O.: A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. Int. J. Gen. Syst. 33(2–3), 289–304 (2004)

    Article  Google Scholar 

  29. Castillo, O., Melin, P.: A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. In: 1998 IEEE international conference on fuzzy systems (FUZZ-IEEE 1998), Proceedings. vol 2, pp 1182–1187

    Google Scholar 

  30. Castillo, O., Melin, P.: Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput. 3(4), 363–378 (2003)

    Article  Google Scholar 

  31. Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms, 9(2), 39 (2016)

    Google Scholar 

  32. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: IEEE international conference on fuzzy systems, pp 2114–2119

    Google Scholar 

  33. Valdez, F., Vazquez, J.C., Melin, P., Castillo, O.: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)

    Article  Google Scholar 

  34. Sanchez, D., Melin, P., Castillo, O.: A grey wolf optimizer for modular granular neural networks for human recognition. Comput. Intell. Neurosci., (2017). https://doi.org/10.1155/2017/4180510

  35. Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms. Eng. Lett. 13(2), 108–116 (2006)

    Google Scholar 

Download references

Acknowledgements

we would like to express our gratitude to CONACYT, Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varela-Santos, S., Melin, P. (2024). Type-2 Mamdani Fuzzy System Optimization for a Classification Ensemble with Black Widow Optimizer. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_3

Download citation

Publish with us

Policies and ethics