Abstract
Ensemble models perform classification on data using multiple models combined and unified to a single output. An important part of the ensemble is the combination or aggregation process. Even so the design of the aggregator for each ensemble could be very different depending on the problem. For this case, a proposed aggregation algorithm combines two classification submodels using a Mamdani fuzzy system. Depending on the data to learn, the fuzzy system could be designed differently. To solve this, we applied a Bio-inspired optimization algorithm, the Black Widow Optimizer, to adjust the fuzzy system into the data the ensemble learns. Adjustment to the problem is done by obtaining the best fuzzy system parameters including membership function points, type of function and optimizing the fuzzy rules. The optimization is compared with other optimization algorithms and experiments for the ensemble are done on two classification datasets of medical images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N.: Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 115, 105151 (2022)
Chen, H., Zhang, Z., Huang, S., Hu, J., Ni, W., Liu, J.: TextCNN-based ensemble learning model for Japanese Text Multi-classification. Comput. Electr. Eng., 109(Part B), 108751 (2023)
Mohammed, A., Kora, R.: A comprehensive review on ensemble deep learning: Opportunities and challenges. J King Saud Univ – Comput Inf Sci, 35(2), 757–774 (2023)
Ouifak, H., Idri, A.: Application of neuro-fuzzy ensembles across domains: A systematic review of the two last decades (2000–2022). Eng. Appl. Artif. Intell. 124, 106582 (2023)
Mendel, J.M.: Type-2 fuzzy sets and systems: an Overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)
Ding, W., Wang, H., Huang, J., Ju, H., Geng, Y., Lin, C., Pedrycz, W.: FTransCNN: Fusion Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation. Information Fusion 99, 101880 (2023)
Calli, E., Sogancioglu, E., Ginneken, B.V., Leeuwen, K.G.V., Murphy, K.: Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 72, 102125 (2021)
Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)
Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, (1975)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
Ganjeh-Alamdari, M., Alikhani, R., Perfilieva, I.: Fuzzy logic approach in salt and pepper noise. Comput. Electr. Eng. 102, 108264 (2022)
Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1, 89–100 (1989)
Rulong, X., Qiang, W., Lei, S., Lei, C.: Design of multi-robot path planning system based on hierarchical fuzzy control. Procedia Engineering 15, 235–239 (2011)
Ouifak, H., Idri, A.: On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis. Scientific African 20, e01610 (2023)
Meng, X., Li, H., Philip Chen, C.L.: A two-stage Bayesian learning-based probabilistic fuzzy interpreter for uncertainty modeling. Appl. Soft Comput., 131, 109786 (2022)
Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J.: A comprehensive review on type 2 fuzzy logic applications: Past, present and future. Eng. Appl. Artif. Intell. 95, 103916 (2020)
Ansarian, A., Mahmoodabadi, M.J.: Multi-objective optimal designo f a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system. Aerosp. Sci. Technol. 141, 108541 (2023)
Haddadnia, J., Faez, K., Ahmadi, M.: A fuzzy learning algorithm for radial basis function neural network with application in human face recognition. Pattern Recogn. 36(5), 1187–1202 (2003)
Olivas, F., Valdez, F., Castillo, O., Gonzales, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)
Das, A.K., Ghosh, S., Thunder, S., Dutta, R., Agarwal, S., Chakrabarti, A.: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl., 24, 1111–1124 (2021)
Gour, M., Jain, S.: Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern. Biomed. Eng. 42, 27–41 (2022)
Varela-Santos, S., & Melin, P.: Classification of X-ray images for pneumonia detection using texture features and neural networks. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.), Intuitionistic and Type-2 fuzzy logic enhancements in neural and optimization algorithms: theory and applications. studies in computational intelligence, vol 862. Springer, Cham (2020)
Kermany, D., Goldbaum, M., Cai, W.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2014)
Devi Bodapati, J., Rohith, V.N.: ChxCapsNet: Deep capsule network with transfer learning for evaluation pneumonia in pediatric chest radiographs. Measurement, 188, 110491 (2022)
Chowdhury, M.E.H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B., Islam, K.R., Khan, M.S., Iqbal, A., Emadi, N.A., Reaz, M.B.I., Islam, M.T.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)
Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S.B.A., Islam, M.T., Maadeed, S.A., Zughaier, S.M., Khan, M.S., Chowdhurry, M.E.H.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 132, 104319 (2021)
Castro, J.R., Castillo, O., Melin, P., RodrÃguez-DÃaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox, Transactions on computational science I, 104–114. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79299-4_5
Melin, P., Castillo, O.: A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. Int. J. Gen. Syst. 33(2–3), 289–304 (2004)
Castillo, O., Melin, P.: A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. In: 1998 IEEE international conference on fuzzy systems (FUZZ-IEEE 1998), Proceedings. vol 2, pp 1182–1187
Castillo, O., Melin, P.: Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput. 3(4), 363–378 (2003)
Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms, 9(2), 39 (2016)
Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: IEEE international conference on fuzzy systems, pp 2114–2119
Valdez, F., Vazquez, J.C., Melin, P., Castillo, O.: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)
Sanchez, D., Melin, P., Castillo, O.: A grey wolf optimizer for modular granular neural networks for human recognition. Comput. Intell. Neurosci., (2017). https://doi.org/10.1155/2017/4180510
Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms. Eng. Lett. 13(2), 108–116 (2006)
Acknowledgements
we would like to express our gratitude to CONACYT, Tijuana Institute of Technology for the facilities and resources granted for the development of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Varela-Santos, S., Melin, P. (2024). Type-2 Mamdani Fuzzy System Optimization for a Classification Ensemble with Black Widow Optimizer. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-55684-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55683-8
Online ISBN: 978-3-031-55684-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)