Skip to main content

Distributed and Collaborative Learning Approach for Stroke Prediction

  • Conference paper
  • First Online:
Advances in Model and Data Engineering in the Digitalization Era (MEDI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2071))

Included in the following conference series:

  • 171 Accesses

Abstract

In this paper, we focus on solving a binary classification problem for stroke prediction. The proposed approach is based on a decentralized and collaborative learning without data sharing among hospitals. This federated learning from decentralized electronic health records will provide a relevant framework for multi-institutional collaborations while maintaining data privacy for each participant. We focus on Artificial Neural Network classifier based on distributed medical data of patients. Simulation tests showed the good performances of the proposed approach, which achieves prediction accuracy of 92% in case of two centers and 95% in case of three centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Senthilkumar, S.A., Rai, B.K., Meshram, A.A., Gunasekaran, A., Chandrakumarmangalam, S.: Big data in healthcare management: a review of literature. Am. J. Theor. Appl. Bus. 4, 57–69 (2018)

    Article  Google Scholar 

  2. Feigin, V.L., et al.: World Stroke Organization (WSO): global stroke fact sheet. Int. J. Stroke 17(1), 18–29 (2022). https://doi.org/10.1177/17474930211065917

    Article  Google Scholar 

  3. Singh, M.S., Choudhary, P.: Stroke prediction using artificial intelligence. In: Proceedings of the 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), Bangkok, Thailand, pp. 158–161 (2017). https://doi.org/10.1109/IEMECON.2017.8079581

  4. Jeena, R.S., Kumar, S.: Stroke prediction using SVM. In: Proceedings of International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 600–602 (2016). https://doi.org/10.1109/ICCICCT.2016.7988020

  5. Alanazi, E.M., Abdou, A., Luo, J.: Predicting Risk of stroke from lab tests using machine learning algorithms: development and evaluation of prediction models. JMIR Form Res. 5(12), e23440 (2021). https://doi.org/10.2196/23440

    Article  Google Scholar 

  6. Govindarajan, P., Soundarapandian, R.K., Gandomi, A.H., Patan, R., Jayaraman, P., Manikandan, R.: Classification of stroke disease using machine learning algorithms. Neural Comput. Appl. 32, 817–828 (2020). https://doi.org/10.1007/s00521-019-04041-y

    Article  Google Scholar 

  7. Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., Lee, C.-C.: Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),pp. 3110–3113. IEEE (2017)

    Google Scholar 

  8. Cheon, S., Kim, J., Lim, J.: The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 16, 1876 (2019)

    Article  Google Scholar 

  9. Chantamit-o-pas, P., Goyal, M.: Long short-term memory recurrent neural network for stroke prediction. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition: 14th International Conference, MLDM 2018, New York, NY, USA, July 15-19, 2018, Proceedings, Part I, pp. 312–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96136-1_25

    Chapter  Google Scholar 

  10. Kaur, M., Sakhare, S.-R., Wanjale, K., Akter, F.: Early stroke prediction methods for prevention of strokes. Behav Neuro. Hindawi. (2022). https://doi.org/10.1155/2022/7725597

  11. Elbagoury, B.M., Vladareanu, L., Vlădăreanu, V., Salem, A.B., Travediu, A.M., Roushdy, M.I.A.: Hybrid stacked CNN and residual feedback GMDH-LSTM deep learning model for stroke prediction applied on mobile AI smart hospital platform. Sensors. 23(7), 3500 (2023). https://doi.org/10.3390/s23073500

    Article  Google Scholar 

  12. Konecêny, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  13. Bonawitz K., et al.: Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019)

  14. Rahman, A., et al.: Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Cluster Comput. 17, 1–41 (2022). https://doi.org/10.1007/s10586-022-03658-4

    Article  Google Scholar 

  15. Documentations from Tensorflow Keras. https://www.tensorflow.org

  16. Health Dataset (Stroke Data). https://www.kaggle.com/datasets/prosperchuks/health-dataset?select=stroke_data.csv

  17. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Aissaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aissaoui, F., Boudali, I., Abdellatif, T. (2024). Distributed and Collaborative Learning Approach for Stroke Prediction. In: Mosbah, M., et al. Advances in Model and Data Engineering in the Digitalization Era. MEDI 2023. Communications in Computer and Information Science, vol 2071. Springer, Cham. https://doi.org/10.1007/978-3-031-55729-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55729-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55728-6

  • Online ISBN: 978-3-031-55729-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics