Skip to main content

Non-inverting Buck-Boost DC-DC Converter with Three-Mode Selection Circuit

  • Conference paper
  • First Online:
Ad Hoc Networks (ADHOCNETS 2023)

Abstract

For battery-powered applications where high current conversion efficiency and long battery life are required, non-inverting Buck-Boost converters are considered the best option. However, during mode switching, ripples in the output current and voltage can significantly affect the efficiency of the chip. The novel Non-inverting Buck-Boost DC-DC converter proposed in this study with a three-mode selection circuit selects the different operating modes (three modes) by comparing VIN and VOUT. By this way, the DC-DC converter can reduce the output ripple and instability during operation. The proposed chip was developed and implemented on the CMOS 0.18 µm process. In addition, a high peak efficiency of 97% can be achieved under the conditions of a wide input range of 2.5 V - 5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oh, J.-W., Jo, J.-W., Kim, Y.-H., Lee, S.-J., Pu, Y.-G.: A 316.5nA quiescent current of DC–DC converter with 92.8% peak efficiency for a IoT application. In: 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 736–739. Paris, France (2023). https://doi.org/10.1109/ICUFN57995.2023.10199436

  2. Chen, Y.-Y., Chang, Y.-C., Wei, C.-L.: Mixed-ripple adaptive on-time controlled non-inverting buck-boost DC-DC converter with adaptive-window-based mode selector. IEEE Trans. Circuits Syst. II Express Briefs 69(4), 2196–2200 (2022). https://doi.org/10.1109/TCSII.2021.3139100

    Article  Google Scholar 

  3. Bai, Y., Zhu, Z., Yang, Z., Zha, S., Hu, S.: Analysis and comparison of inductor current characteristics for non-inverting buck-boost converter with four-mode modulation. In: 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), pp. 2534–2540. Nangjing, China (2022). https://doi.org/10.1109/CIEEC54735.2022.9846753

  4. Ikeda, T., Castellazzi, A., Hikihara, T.: Modulation options for a high-frequency high-efficiency GaN-based non-inverting buck-boost DC-DC converter. In: 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), pp. 2193–2198. Singapore, Singapore (2021).https://doi.org/10.1109/ECCE-Asia49820.2021.9479297

  5. Alajmi, B.N., Abdelsalam, I., Marei, M.I., Ahmed, N.A.: Two stage single-phase EV on-board charger based on interleaved cascaded non-inverting buck-boost converter. In: 2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE), pp. 1–6. Luxor, Egypt (2023). https://doi.org/10.1109/CPERE56564.2023.10119584

  6. Wei, A., Lehman, B., Bowhers, W., Amirabadi, M.: A soft-switching non-inverting buck-boost converter. In: 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1920–1926. Phoenix, AZ, USA (2021).https://doi.org/10.1109/APEC42165.2021.9487051

  7. Xu, C., Liu, L.: A four modes and smooth transition non-inverting buck-boost converter. In: 2021 IEEE 14th International Conference on ASIC (ASICON), pp. 1–4. Kunming, China (2021). https://doi.org/10.1109/ASICON52560.2021.9620338

  8. Alajmi, B.N., Marei, M.I., Abdelsalam, I., Ahmed, N.A.: Multiphase interleaved converter based on cascaded non-inverting buck-boost converter. IEEE Access 10, 42497–42506 (2022). https://doi.org/10.1109/ACCESS.2022.3168389

    Article  Google Scholar 

  9. Wu, H., Mu, T., Ge, H., Xing, Y.: Full-range soft-switching-isolated buck-boost con-verters with integrated interleaved boost converter and phase-shifted control. IEEE Trans. Power Electron. 31(2), 987–999 (2016). https://doi.org/10.1109/TPEL.2015.2425956

    Article  Google Scholar 

  10. Wu, D., Calderon-Lopez, G., Forsyth, A.J.: Discontinuous conduction/current mode analysis of dual interleaved buck and boost converters with interphase transformer. IET Power Electron. 9(1), 31–41 (2016). https://doi.org/10.1049/iet-pel.2014.0924

    Article  Google Scholar 

  11. Li, W., Xiao, J., Zhao, Y., He, X.: PWM plus phase angle shift (PPAS) control scheme for combined multiport DC/DC converters. IEEE Trans. Power Electron. 27(3), 1479–1489 (2012). https://doi.org/10.1109/TPEL.2011.2163826

    Article  Google Scholar 

  12. Hong, S.-W., Park, S.-H., Kong, T.-H., Cho, G.-H.: Inverting buck-boost DC-DC con-verter for mobile AMOLED display using real-time self-tuned minimum power-loss tracking (MPLT) scheme with lossless soft-switching for discontinuous conduction mode. IEEE J. Solid-State Circ. 50(10), 2380–2393 (2015). https://doi.org/10.1109/JSSC.2015.2450713

    Article  Google Scholar 

  13. Shin, S.-H., Hong, S., Kwon, O.-K.: High-efficient inverting buck-boost converter with fully digital-controlled switch width modulation for microdisplays. Elec-tronics Letters 54, 309–311 (2018)

    Article  Google Scholar 

  14. Wu, K.-C., Wu, H.-H., Wei, C.-L.: Analysis and design of mixed-mode operation for noninverting buck-boost DC–DC converters. IEEE Trans. Circ. Syst. II: Express Briefs 62(12), 1194–1198 (2015). https://doi.org/10.1109/TCSII.2015.2469032

    Article  Google Scholar 

  15. Tsai, Y.-Y., Tsai, Y.-S., Tsai, C.-W., Tsai, C.-H.: Digital noninverting-buck–boost con-verter with enhanced duty-cycle-overlap control. IEEE Trans. Circ. Syst. II Express Briefs 64(1), 41–45 (2017). https://doi.org/10.1109/TCSII.2016.2546881

    Article  Google Scholar 

  16. Thi Kim Nga, T., et al.: A wide input range buck-boost DC–DC converter using hysteresis triple-mode control technique with peak efficiency of 94.8% for RF energy harvesting applications. Energies, 11(7), 1618 (2018)

    Google Scholar 

  17. Chen, J.-J., Shen, P.-N., Hwang, Y.-S.: A high-efficiency positive buck-boost converter with mode-select circuit and feed-forward techniques. IEEE Trans. Power Electron. 28(9), 4240–4247 (2013). https://doi.org/10.1109/TPEL.2012.2223718

    Article  Google Scholar 

  18. Malcovati, P., Belloni, M., Gozzini, F., Bazzani, C., Baschirotto, A.: A 0.18-µm CMOS, 91%-efficiency, 2-a scalable buck-boost DC–DC converter for LED drivers. IEEE Trans. Power Electron. 29(10), 5392–5398 (2014). https://doi.org/10.1109/TPEL.2013.2294189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Thanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V.T., Bo, Q.B., Pham, X.T. (2024). Non-inverting Buck-Boost DC-DC Converter with Three-Mode Selection Circuit. In: Thi Dieu Linh, N., Hoang, M.K., Dang, T.H. (eds) Ad Hoc Networks. ADHOCNETS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 558. Springer, Cham. https://doi.org/10.1007/978-3-031-55993-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55993-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55992-1

  • Online ISBN: 978-3-031-55993-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics