Skip to main content

Alleviating Confounding Effects with Contrastive Learning in Recommendation

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14609))

Included in the following conference series:

  • 385 Accesses

Abstract

Recently, there has been a growing interest in mitigating the bias effects in recommendations using causal inference. However, Rubin’s potential outcome framework may produce inaccurate estimates in real-world scenarios due to the presence of hidden confounders. In addition, existing works adopting the Pearl causal graph framework tend to focus on specific types of bias (e.g., selection bias, popularity bias, exposure bias) instead of directly mitigating the impact of hidden confounders. Motivated by the aforementioned limitations, in this paper, we formulate the recommendation task as a causal graph with unobserved/unmeasurable confounders. We present a novel causality-based architecture called Multi-behavior Debiased Contrastive Collaborative Filtering (MDCCL) and apply the front-door adjustment for intervention. We leverage a pre-like behavior such as clicking an item (i.e., a behavior occurred before the target behavior such as purchasing) to mitigate the bias effects. Additionally, we design a contrastive loss that also provides a debiasing effect benefiting the recommendation. An empirical study on three real-world datasets validates that our proposed method successfully outperforms nine state-of-the-art baselines. Code and the datasets will be available at https://github.com/queenjocey/MDCCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: RecSys, pp. 42–46 (2017)

    Google Scholar 

  2. Chen, J., et al.: AutoDebias: learning to debias for recommendation. In: SIGIR, pp. 21–30 (2021)

    Google Scholar 

  3. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. 41, 1–39 (2020)

    Google Scholar 

  4. Ding, S., et al.: Addressing unmeasured confounder for recommendation with sensitivity analysis. In: KDD, pp. 305–315 (2022)

    Google Scholar 

  5. Gao, C., et al.: KuaiRec: a fully-observed dataset and insights for evaluating recommender systems. In: CIKM (2022)

    Google Scholar 

  6. Gulla, J.A., Zhang, L., Liu, P., Özgöbek, O., Su, X.: The Adressa dataset for news recommendation. In: WI (2017)

    Google Scholar 

  7. Guo, S., et al.: Enhanced doubly robust learning for debiasing post-click conversion rate estimation. In: SIGIR (2021)

    Google Scholar 

  8. Gutmann, M., Hyärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: AISTATS, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  9. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, pp. 507–517 (2016)

    Google Scholar 

  10. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639–648 (2020)

    Google Scholar 

  11. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  12. Hernández-Lobato, J.M., Houlsby, N., Ghahramani, Z.: Probabilistic matrix factorization with non-random missing data. In: ICML (2014)

    Google Scholar 

  13. Kim, Y., Hassan, A., White, R.W., Zitouni, I.: Modeling dwell time to predict click-level satisfaction. In: WSDM, pp. 193–202 (2014)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  16. Li, Y., Hu, J., Zhai, C., Chen, Y.: Improving one-class collaborative filtering by incorporating rich user information. In: CIKM (2010)

    Google Scholar 

  17. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: WWW, pp. 689–698 (2018)

    Google Scholar 

  18. Liu, D., et al.: Mitigating confounding bias in recommendation via information bottleneck. In: RecSys (2021)

    Google Scholar 

  19. Liu, D., Lin, C., Zhang, Z., Xiao, Y., Tong, H.: Spiral of silence in recommender systems. In: WSDM, pp. 222–230 (2019)

    Google Scholar 

  20. Ma, X., et al.: Entire space multi-task model: an effective approach for estimating post-click conversion rate. In: SIGIR (2018)

    Google Scholar 

  21. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint (2018)

    Google Scholar 

  22. Ovaisi, Z., Ahsan, R., Zhang, Y., Vasilaky, K., Zheleva, E.: Correcting for selection bias in learning-to-rank systems. In: WWW (2020)

    Google Scholar 

  23. Pearl, J., Glymour, M.M., Jewell, N.P.: Causal inference in statistics: a primer (2016)

    Google Scholar 

  24. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

    Google Scholar 

  25. Saito, Y.: Asymmetric tri-training for debiasing missing-not-at-random explicit feedback. In: SIGIR (2020)

    Google Scholar 

  26. Saito, Y.: Unbiased pairwise learning from biased implicit feedback. In: SIGIR, pp. 5–12 (2020)

    Google Scholar 

  27. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: debiasing learning and evaluation, pp. 1670–1679. PMLR (2016)

    Google Scholar 

  28. Tao, W., et al. : SMINet: state-aware multi-aspect interests representation network for cold-start users recommendation. In: AAAI (2022)

    Google Scholar 

  29. Tran, T., Sweeney, R., Lee, K.: Adversarial Mahalanobis distance-based attentive song recommender for automatic playlist continuation. In: SIGIR (2019)

    Google Scholar 

  30. Tran, T., You, D., Lee, K.: Quaternion-based self-attentive long short-term user preference encoding for recommendation. In: CIKM, pp. 1455–1464 (2020)

    Google Scholar 

  31. VanderWeele, T.J.: A three-way decomposition of a total effect into direct, indirect, and interactive effects. Epidemiology 24, 224–232 (2013)

    Article  Google Scholar 

  32. Wang, W., Feng, F., He, X., Wang, X., Chua, T.S.: Deconfounded recommendation for alleviating bias amplification. In: KDD, pp. 1717–1725 (2021)

    Google Scholar 

  33. Wang, W., Feng, F., He, X., Zhang, H., Chua, T.S.: Clicks can be cheating: counterfactual recommendation for mitigating clickbait issue. In: SIGIR (2021)

    Google Scholar 

  34. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174 (2019)

    Google Scholar 

  35. Wang, X., Zhang, R., Sun, Y., Qi, J.: Doubly robust joint learning for recommendation on data missing not at random. In: ICML (2019)

    Google Scholar 

  36. Wei, C., Liang, J., Liu, D., Wang, F.: Contrastive graph structure learning via information bottleneck for recommendation. In: NeurIPS, vol. 35, pp. 20407–20420 (2022)

    Google Scholar 

  37. Wei, T., Feng, F., Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In: KDD (2021)

    Google Scholar 

  38. Xin, X., He, X., Zhang, Y., Zhang, Y., Jose, J.: Relational collaborative filtering: modeling multiple item relations for recommendation. In: SIGIR, pp. 125–134 (2019)

    Google Scholar 

  39. Xu, S., Tan, J., Heinecke, S., Li, J., Zhang, Y.: Deconfounded causal collaborative filtering. arXiv arXiv:2110.07122 (2021)

  40. Yang, L., Cui, Y., Xuan, Y., Wang, C., Belongie, S., Estrin, D.: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In: RecSys, pp. 279–287 (2018)

    Google Scholar 

  41. You, D., Vo, N., Lee, K., Liu, Q.: Attributed multi-relational attention network for fact-checking URL recommendation. In: CIKM (2019)

    Google Scholar 

  42. Zhang, W., et al.: Large-scale causal approaches to debiasing post-click conversion rate estimation with multi-task learning. In: WWW (2020)

    Google Scholar 

  43. Zhang, Y., et al.: Causal intervention for leveraging popularity bias in recommendation. In: SIGIR (2021)

    Google Scholar 

  44. Zhao, Z., et al.: Popularity bias is not always evil: disentangling benign and harmful bias for recommendation. IEEE Trans. Knowl. Data Eng. 35, 9920–9931 (2022)

    Article  Google Scholar 

  45. Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and conformity for recommendation with causal embedding. In: Proceedings of the Web Conference 2021, pp. 2980–2991 (2021)

    Google Scholar 

  46. Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and conformity for recommendation with causal embedding. In: WWW (2021)

    Google Scholar 

  47. Zhu, X., Zhang, Y., Feng, F., Yang, X., Wang, D., He, X.: Mitigating hidden confounding effects for causal recommendation. arXiv arXiv:2205.07499 (2022)

  48. Zhu, Z., He, Y., Zhang, Y., Caverlee, J.: Unbiased implicit recommendation and propensity estimation via combinational joint learning. In: RecSys (2020)

    Google Scholar 

  49. Zhu, Z., He, Y., Zhao, X., Caverlee, J.: Popularity bias in dynamic recommendation. In: KDD (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di You or Kyumin Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, D., Lee, K. (2024). Alleviating Confounding Effects with Contrastive Learning in Recommendation. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14609. Springer, Cham. https://doi.org/10.1007/978-3-031-56060-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56060-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56059-0

  • Online ISBN: 978-3-031-56060-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics