Skip to main content

Knowledge Graph Cross-View Contrastive Learning for Recommendation

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14610))

Included in the following conference series:

Abstract

Knowledge Graphs (KGs) are useful side information that help recommendation systems improve recommendation quality by providing rich semantic information about entities and items. Recently, models based on graph neural networks (GNNs) have adopted knowledge graphs to capture further high-order structural information, such as shared preferences between users and similarities between items. However, existing GNN-based methods suffer from two challenges: (1) Sparse supervisory signal, where a large amount of information in the knowledge graph is non-relevant to recommendation, and the training labels are insufficient, thereby limiting the recommendation performance of the trained model; (2) Valuable information is discarded whereby the use by the existing models of edge or node dropout strategies to obtain augmented views during self-supervised learning could lead to valuable information being discarded in recommendation. These two challenges limit the effective representation of users and items by existing methods. Inspired by self-supervised learning to mine supervision signals from data, in this paper, we focus on exploring contrastive learning based on knowledge graph enhancement, and propose a new model named Knowledge Graph Cross-view Contrastive Learning for Recommendation (KGCCL) to address the two challenges. Specifically, to address supervision sparseness, we perform contrastive learning between graph views at different levels and mine graph feature information in a self-supervised learning manner. In addition, we use noise augmentation to enhance the representation of users and items, while retaining all triplet information in the knowledge graph to address the challenge of valuable information being discarded. Experimental results on three public datasets show that our proposed KGCCL model outperforms existing state-of-the-art methods. In particular, our model outperforms the best baseline performance by 10.65% on the MIND dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code for KGCCL is available at: https://github.com/terrierteam/KGCCL.

  2. 2.

    Results on the MIND dataset follow similar trends. We omit them because of space constraints.

References

  1. Abdulhussein, N.A., Obaid, A.J.: User recommendation system based on mind dataset. arXiv preprint arXiv:2209.06131 (2022)

  2. Ai, Q., Azizi, V., Chen, X., Zhang, Y.: Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms (2018)

    Google Scholar 

  3. Aitchison, L.: InfoNCE is a variational autoencoder. arXiv preprint arXiv:2107.02495 (2021)

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD (2008)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of ICML (2020)

    Google Scholar 

  6. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. (2020)

    Google Scholar 

  7. Fan, W., et al.: Graph neural networks for social recommendation. In: Proceedings of WWW (2019)

    Google Scholar 

  8. Fensel, D., et al.: Introduction: what is a knowledge graph? Knowledge graphs (2020)

    Google Scholar 

  9. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  10. Hayou, S., Doucet, A., Rousseau, J.: On the impact of the activation function on deep neural networks training. In: Proceedings of ICML (2019)

    Google Scholar 

  11. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of WWW (2016)

    Google Scholar 

  12. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of SIGIR (2017)

    Google Scholar 

  13. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of SIGIR (2020)

    Google Scholar 

  14. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of WWW (2017)

    Google Scholar 

  15. Hu, B., Shi, C., Zhao, W.X., Yu, P.S.: Leveraging meta-path based context for top-N recommendation with a neural co-attention model. In: Proceedings of SIGKDD (2018)

    Google Scholar 

  16. Huang, C., et al.: Knowledge-aware coupled graph neural network for social recommendation. In: Proceedings of AAAI (2021)

    Google Scholar 

  17. Jo, Y., Yoo, H., Bak, J., Oh, A., Reed, C., Hovy, E.: Knowledge-enhanced evidence retrieval for counterargument generation. In: Proceedings of EMNLP Findings (2021)

    Google Scholar 

  18. Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of NeurIPS (2020)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICML (2017)

    Google Scholar 

  21. Lai, T.M., Ji, H., Zhai, C.: Improving candidate retrieval with entity profile generation for Wikidata entity linking. In: Proceedings of ACL Findings (2022)

    Google Scholar 

  22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI (2015)

    Google Scholar 

  23. Liu, C., Li, L., Yao, X., Tang, L.: A survey of recommendation algorithms based on knowledge graph embedding. In: Proceedings of CSEI (2019)

    Google Scholar 

  24. Liu, S., Ounis, I., Macdonald, C.: An MLP-based algorithm for efficient contrastive graph recommendations. In: Proceedings of SIGIR (2022)

    Google Scholar 

  25. Ma, T., et al.: Social network and tag sources based augmenting collaborative recommender system. Trans. Inf. Syst. (2015)

    Google Scholar 

  26. Mancino, A.C.M., Ferrara, A., Bufi, S., Malitesta, D., Di Noia, T., Di Sciascio, E.: KGTORe: tailored recommendations through knowledge-aware GNN models. In: Proceedings of RecSys, pp. 576–587 (2023)

    Google Scholar 

  27. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of UCAI (2009)

    Google Scholar 

  28. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. Trans. Knowl. Data Eng. (2018)

    Google Scholar 

  29. Sánchez-Moreno, D., Moreno-García, M.N., Sonboli, N., Mobasher, B., Burke, R.: Using social tag embedding in a collaborative filtering approach for recommender systems. In: Proceedings of WIC (2020)

    Google Scholar 

  30. Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of WWW (2012)

    Google Scholar 

  31. Wang, H., et al.: Knowledge-adaptive contrastive learning for recommendation. In: Proceedings of WSDM (2023)

    Google Scholar 

  32. Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for news recommendation. In: Proceedings of the WWW (2018)

    Google Scholar 

  33. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of SIGKDD (2019)

    Google Scholar 

  34. Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of WWW (2021)

    Google Scholar 

  35. Wang, Y., Liu, Z., Fan, Z., Sun, L., Yu, P.S.: DSKReG: differentiable sampling on knowledge graph for recommendation with relational GNN. In: Proceedings of CIKM (2021)

    Google Scholar 

  36. Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of SIGIR (2021)

    Google Scholar 

  37. Xia, J., Wu, L., Chen, J., Hu, B., Li, S.Z.: SimGRACE: a simple framework for graph contrastive learning without data augmentation. In: Proceedings of WWW (2022)

    Google Scholar 

  38. Yang, L., Yin, X., Long, J., Chen, T., Zhao, J., Huang, W.: Spatio-temporal aware knowledge graph embedding for recommender systems. In: Proceedings of ISPA (2022)

    Google Scholar 

  39. Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation. In: Proceedings of SIGIR (2022)

    Google Scholar 

  40. Yi, Z., Ounis, I., Macdonald, C.: Contrastive graph prompt-tuning for cross-domain recommendation. Trans. Inf. Syst. 42 (2023)

    Google Scholar 

  41. Yi, Z., Ounis, I., Macdonald, C.: Graph contrastive learning with positional representation for recommendation. In: Proceedings of ECIR (2023)

    Google Scholar 

  42. Yi, Z., Wang, X., Ounis, I., Macdonald, C.: Multi-modal graph contrastive learning for micro-video recommendation. In: Proceedings of SIGIR (2022)

    Google Scholar 

  43. Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., Nguyen, Q.V.H.: Are graph augmentations necessary? Simple graph contrastive learning for recommendation. In: Proceedings of SIGIR (2022)

    Google Scholar 

  44. Yu, J., Yin, H., Xia, X., Chen, T., Li, J., Huang, Z.: Self-supervised learning for recommender systems: a survey. Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  45. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of SIGKDD (2016)

    Google Scholar 

  46. Zhao, W.X., et al.: KB4Rec: a data set for linking knowledge bases with recommender systems. Data Intell. (2019)

    Google Scholar 

  47. Zou, D., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: Proceedings of SIGIR (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyuan Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Z., Ounis, I., Macdonald, C., Yi, Z. (2024). Knowledge Graph Cross-View Contrastive Learning for Recommendation. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14610. Springer, Cham. https://doi.org/10.1007/978-3-031-56063-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56063-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56062-0

  • Online ISBN: 978-3-031-56063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics