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Abstract. Online to offline recommendation strongly correlates with
the user and service’s spatiotemporal information, therefore calling for
a higher degree of model personalization. The traditional methodology
is based on a uniform model structure trained by collected centralized
data, which is unlikely to capture all user patterns over different geo-
graphical areas or time periods. To tackle this challenge, we propose a
geographical group-specific modeling method called GeoGrouse, which
simultaneously studies the common knowledge as well as group-specific
knowledge of user preferences. An automatic grouping paradigm is em-
ployed and verified based on users’ geographical grouping indicators.
Offline and online experiments are conducted to verify the effectiveness
of our approach, and substantial business improvement is achieved.

Keywords: 020 Recommendation - Personalized Network - Reinforce-
ment Learning - Expectation Maximization.

1 Introduction

Online to offline (020) platforms such as Uber and Meituan map online users
with offline service providers on users’ smartphones. This mapping is naturally
geographically and temporal influenced, which is significantly different from
traditional e-commerce platforms like Amazon/Taobao. Examples of this spa-
tiotemporal influence include 1) for a specific user, only services within his/her
adjacent area are applicable candidates according to the order fulfillment pos-
sibility, resulting in an extremely sparse user-item interaction matrix (sparsity
inevitably happens when user and item from different areas); 2) users’ interests
may vary dramatically in different time periods (e.g. food orders in the morning

*** The first two authors contributed equally to this research.
T Corresponding author.
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Fig. 1. Geographic influence on order distributions of an O20 retail delivery platform.
Top-Five item categories and their fractions are exhibited for five different functional
regions (residence, working, business, education, and hospital).

or evening; traveling options in workdays or weekends) ; 3) users from different
geographical areas could have varied food tastes and therefore distinct behavior
patterns (see Figure [1] as an illustrative example). These characteristics intro-
duce more challenges for reasonable servicing personalization with respect to
user spatiotemporal information. For the conventional unified model architec-
ture [11], user data across all time periods and geographical areas are leveraged
together to study a uniform model representation, which may suffer performance
degradation given non-uniform data distribution as shown in Figure [I] On the
contrary, one can choose to train a distinct model on each different geographical
area and time period, to better capture local data distributions. Nevertheless,
one needs to arbitrarily determine the model granularity, and fail to capture the
user behavior commonality [9]. Data of each model partition is also much more
sparse than the uniform framework.

In this work, we propose a novel Geographic Group-specific (GeoGrouse)
model framework to tackle the aforementioned challenges, on Ele.meEl, a world-
leading 020 food delivery application. Similar to STAR architecture [9], our
model includes a shared-central network, as well as group-specific networks each
of which is tailored to a specific user group. During training, the central net-
work is trained on the entire data scope to capture user commonality; while the
group-specific network is deployed on the device side and provides the group-
level specializations by finetuning with its corresponding group data. The user
grouping indicator is determined by a trainable latent embedding function with
user geographical features as input. This methodology can be generalized to dif-
ferent types of user grouping specifications. The main contributions of this paper
include:

4 https://wuw.ele.me/
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Fig. 2. The framework of GeoGrouse. User states are processed with a centered module
and group-specific modules, while o, generates the user grouping latent variable which
determines the active group-specific module.

— To the best of our knowledge, this is the first time to incorporate the idea
of group-specific modeling with O20 recommendation, for better personal-
ization of spatiotemporal influences.

— We design an adaptive user grouping mechanism instead of arbitrary user
grouping.

— Performances of GeoGrouse on different business indicators are verified by
realistic live experiments.

2 Method

2.1 Framework

Reinforcement Learning (RL) is an interactive learning algorithm between the
agent and the environment. The agent observes the state s, acts with the action
a, and receives the reward r from the environment. An episode with length ¢
can be denoted as 7, := {so,ag,70,51,a1,71," ", St,at,Tt}. The state transits
by T (st+1|st,at). The objective is the discounted accumulated rewards G; =
>0 ytry with 4 € (0, 1] as the discounted factor, and the agent aims to find an
optimal policy m(a|s) which maximizes the expected G;.

Here we employ this RL framework to solve the Top-K recommendation
problem, with a system configuration similar to [2]. Nonetheless, motivated by
the spatial-temporal dependency of O20, we model our policy by explicit user
grouping. In this work, we further assume the distribution of states is implic-
itly determined by a latent grouping variable h, with the likelihood recognition
function o(h|s). Accordingly, the original policy 7(a|s) becomes a latent space
policy m(als, h). Below are the detailed definitions of system variables:

— s: the user profiles, historical behavior sequences, and context features in-
cluding the season, weather, and geographic info (denoted by g).
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— a: embedding of recommended items.

— r: the immediate reward obtained after a recommendation, assigned as 1
with a click or add-to-cart, and 0 otherwise.

— h: the grouping indicator as a learnable embedding of g.

Similar to the STAR topology [9], our policy network is a combination of
one group-shared module and multiple group-specification modules. Grouping
is achieved by parametric recognition model o4(h|s) which is jointly learned
with the parametric policy mg(als, h). We name this recommendation method as
Geographic Group-Specific (GeoGrouse) network, as indicated by Figure

2.2 Implementation of Group-Specification

As stated in Section the policy network 7 includes the group-shared module
at the bottom and the group-specification module at the top. The group-shared
module and the group-specification module are then denoted by

as = DIN,(s), a=GSy(as,h)

in which a is the shared part of action and DIN is the Deep Interest Network
[12] tower. The policy can then be re-expressed as mgy(a|s, h) = GS,(DIN,,(s), h)
with € as union of {u,n}. The embedding of the grouping indicator can be
further expressed as the parametric form of h = o4(g). In the following sub-
sections we propose three possible group-specification implementations of o4(g)
and GS,(as, h), with their architectural comparison shown in Figure

K-Means. K-Means is a classic clustering method and is tightly correlated with
MLE and EM [6]. With the number of clusters K as key hyper-parameter, K-
Means acts as o, which first learns K cluster centroid {gx}£_,, then determine
the most nearby cluster from the current g

h=F= i —
argkg[lll}}q\\g gkll2

Then K identical MLP towers are implemented to form G5,
a® =MLP,, (a5), k=1,--- K

then a is simply the output selection of the kth tower, a = aF with n =
{m,--- ,mk}. During training, MLP,, is only trained with samples of the kth
cluster to achieve the group-specialization.

Prototypical Networks. Similar to K-means, the prototypical method [7]
also intrigues K towers MLP,, but in a more automatic manner. First h is
represented by K learned prototype vectors, i.e., {px}:_,, using method in [7],
the current optimal prototype is determined by

k = arg max cos(g, pk)
ke[l,K]
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Fig. 3. Comparison of Grouping Implementations. g is the geography-related part
among the s attributes.

where cos(-, -) is the cosine similarity. Then for each k, py can be further trans-
formed to 7, with a uniform expression

N, = tanh(Wpy +0),
where W and b are trainable and n = [, b].

Co-Action Network. Co-Action Network (CAN) [I] is a feature-cross process-
ing technique that provides an automatic manner of group specification, without
the inclusion of explicit K separated towers. By linearly transforming g to A and
directly utilizing it as the weight & bias parameter of micro-MLP tower,

h = Lyg, a=MLP,—p(as)

a uniform-structured group-specification module is then obtained which can be
automatically adapted to different g.

2.3 Algorithm

We approximate our solution by the famous Expectation-Maximization method
(EM) [3]. During the Expectation stage, the latent variable is recognized by
maximizing the likelihood of ¢ with the fixed 6:

|s|=N

L(6) = log P(hr) ~ 1= > logas(hls) 1)

s~p(mo)

On the Maximization stage, the policy parameter ¢ is updated given the current
best estimate h. Analogous to the original REINFORCE (Section 13.3 in [10])
derivation, we have

VJ(0) ~ E, Z 4x(s,0)Vr(als,h) = E;[G;V Inn(als, h)] (2)
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3 Experiment

We launch GeoGrouse on the Ele.me platform for the retail product-instore rec-
ommendation. CAN in Section is adopted as the default group-specification
logic since it has the best experimental result. Codes have been made publicﬂ

3.1 Experimental Configurations

We obtain the geographic features g by concatenating embeddings of spatiotem-
poral features, such as city, GPS, area-of-interests (AOI), hour, and season.

The model is trained with data extracted from 60 days’ logs. The average
session length is 35 while the maximum is 586. We compare GeoGrouse with
several baselines including (1) StEN [8] has state-of-the-art performance on
020 recommendation which encodes spatiotemporal information by specially
designed activation and attention. (2) DIN (Deep Interest Network) [13] has a
local activation that captures the user interest with the target item, but with
no specific spatiotemporal logic. (3) DeepFM [5] is a classical cross-feature
technique for deep neural networks.

3.2 Offline Experiment and Sensitivity Analysis

Data from the very last day is used as the test set. Experiments are repeated 10
times. Widely-used metrics such as Area Under Curve (AUC), Normalized Dis-
counted Cumulative Gain (NDCG), and Hit Rate are used for evaluation. Table
shows the offline results. GeoGrouse outperforms baselines on metrics. Among
the baselines, StEN is obviously better than DIN and DeepFM, indicating the
importance of spatiotemporal considerations. We also perform a sensitivity anal-
ysis of AUCs according to the choice of AOI level (and its vocabulary size), which
is one of the key geographic indicators of g. Figure [4] indicates the optimal AOI
level is 3 therefore we adopt this grouping granularity in formal experiments.

Table 1. Result of Offline Experiment

Model StEN DIN DeepFM  GeoGrouse
AUC 0.82040.004 0.658+0.005 0.778+0.006 0.832+0.007
NDCG@3 0.67240.012 0.50440.010 0.575+0.011 0.674+0.012
NDCG@5 0.69540.014 0.53640.011 0.606+0.015 0.696+0.015
NDCG@10 0.728+0.015 0.583+0.017 0.6514+0.015 0.730+0.017
NDCG@20 0.759+0.016 0.627+0.018 0.6914+0.018 0.760+0.017
NDCG@50 0.783+0.015 0.665+0.015 0.721+0.017 0.78440.018
Hit Rate@10 0.959+0.006 0.893+0.005 0.932+0.008 0.960+0.009

% https://github.com/AaronJi/GeoGrouse
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Fig. 4. Sensitivity Analysis of AOI Levels.
3.3 Online A/B Test and Ablation Test

The online A/B test lasts for 7 days. The key performance index (KPI) includes
the click-through rate (CTR), the add-to-cart rate (ACR), the number of users
with impressions (impress-UV), the number of users with clicks (click-UV), and
the number of users with add-to-cart behavior (cart-UV). Due to online indus-
trial constraints, only StEN is deployed as the live baseline. Compared with StEN
and Geogrouse with group-specification of K-means and Prototypical (denoted
as ‘GeoGrouse-K’ and ‘GeoGrouse-P’), GeoGrouse improves all KPIs substan-
tially as shown in Table

Table 2. Result of Live Experiment. Results of GeoGrouse-K and GeoGrouse-P are
relative numbers to GeoGrouse.

Model StEN  GeoGrouse GeoGrouse-K GeoGrouse-P

CTR 13.08% 13.20% -0.50% -0.05%
ACR 9.99% 10.06% -0.03% -0.02%
impress-UV 313,206 313,920 +0.97% -0.04%
click-UV 40,980 41,439 -0.81% -0.43%
cart-UV 31,277 31,579 -0.67% +0.03%

4 Conclusion

In this paper, we propose a novel GeoGrouse method that applies self-adaptive
user group-specification to 020 recommendation, for better personalization. Our
approach is not limited to geographical factors but can be generalized to any
grouping considerations. One limitation is the increased mode size due to multi-
ple group-specific modules, which can be alleviated by split-deployment on edge
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devices [4]. In the future, it would be interesting to examine the broader scope of
user grouping possibilities and attempt different levels of grouping granularity.
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