Skip to main content

Not Just Algorithms: Strategically Addressing Consumer Impacts in Information Retrieval

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

Information Retrieval (IR) systems have a wide range of impacts on consumers. We offer maps to help identify goals IR systems could—or should—strive for, and guide the process of scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to address these effects. Grounded in prior work on scoping algorithmic impact efforts, our goal is to promote and facilitate research that (1) is grounded in impacts on information consumers, contextualizing these impacts in the broader landscape of positive and negative consumer experience; (2) takes a broad view of the possible means of changing or improving that impact, including non-technical interventions; and (3) uses operationalizations and strategies that are well-matched to the technical, social, ethical, legal, and other dimensions of the specific problem in question.

Partly supported by the National Science Foundation on Grant 17-51278.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We borrow the concept of intervention from public health, behavioral health, and education to concisely express the idea of taking action to modify a system or its environment in order to address a problem (or enhance a positive phenomena). While this language is not widely used in IR research, we propose that it is useful for discussing how changes in a system’s operation and outcomes can be effected.

References

  1. ABC Mouse (August 2022). https://www.abcmouse.com/

  2. Biblionasium (August 2022). https://www.biblionasium.com/

  3. Pickatale (August 2022). https://pickatale.com/

  4. Abdollahpouri, H., et al.: Multistakeholder recommendation: survey and research directions. User Model. User-Adapted Interact. 30(1), 127–158 (2020). https://doi.org/10.1007/s11257-019-09256-1, ISSN 0924–1868

  5. Agarwal, A., Zaitsev, I., Wang, X., Li, C., Najork, M., Joachims, T.: Estimating position bias without intrusive interventions. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 474–482, Association for Computing Machinery, New York. (Jan 2019), https://doi.org/10.1145/3289600.3291017

  6. Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., Rieke, A.: Discrimination through optimization: how facebook’s ad delivery can lead to biased outcomes. Proc. ACM Hum.-Comput. Interact. 3(CSCW), 1–30 (2019). https://doi.org/10.1145/3359301

  7. Altman, D.G., Bland, J.M.: Statistics notes: units of analysis. BMJ 314(7098), 1874 (1997). https://doi.org/10.1136/bmj.314.7098.1874, ISSN 0959–8138, 1468–5833

  8. Andalibi, N., Garcia, P.: Sensemaking and coping after pregnancy loss. Proc. ACM Hum.-Comput. Interact. 5(CSCW1), 1–32 (2021). https://doi.org/10.1145/3449201, ISSN 2573–0142

  9. Antona, M., Savidis, A., Stephanidis, C.: A process-oriented interactive design environment for automatic user-interface adaptation. Inter. J. Hum.-Comput. Interact. 20(2), 79–116 (2006). https://doi.org/10.1207/s15327590ijhc2002_2, ISSN 1044–7318

  10. Anuyah, O., Milton, A., Green, M., Pera, M.S.: An empirical analysis of search engines’ response to web search queries associated with the classroom setting. Aslib J. Inform. Manag. 72(1), 88–111 (2020). https://doi.org/10.1108/AJIM-06-2019-0143, ISSN 2050–3806

  11. Banskota, A., Ng, Y.K.: Recommending video games to adults with autism spectrum disorder for social-skill enhancement. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 14–22, Association for Computing Machinery, New York (Jul 2020), https://doi.org/10.1145/3340631.3394867

  12. Barocas, S., Crawford, K., Shapiro, A., Wallach, H.: The problem wtih bias: Allocative versus representational harms in machine learning. In: 9th Annual Conference of the Special Interest Group for Computing, Information and Society (2017)

    Google Scholar 

  13. Barocas, S., et al.: Designing disaggregated evaluations of AI systems: choices, considerations, and tradeoffs. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 368–378, Association for Computing Machinery, New York (Jul 2021). https://doi.org/10.1145/3461702.3462610

  14. Beattie, L., Taber, D., Cramer, H.: Challenges in translating research to practice for evaluating fairness and bias in recommendation systems. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 528–530, Association for Computing Machinery, New York (Sep 2022). https://doi.org/10.1145/3523227.3547403

  15. Becker, C.D., Ostrom, E.: Human ecology and resource sustainability: the importance of institutional diversity. Annal Rev. Ecol. Systematics 26(1), 113–133 (1995), https://doi.org/10.1146/annurev.es.26.110195.000553, ISSN 0066–4162

  16. Belkin, N.J., Robertson, S.E.: Some ethical and political implications of theoretical research in information science. In: Proceedings of the ASIS Annual Meeting (1976). https://www.researchgate.net/publication/255563562

  17. Benjamin, R.: Race after Technology: Abolitionist Tools for the New Jim Code. Polity (2019), ISBN 978-1-5095-2640-6

    Google Scholar 

  18. Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information-searching behavior? The case of Google. J. Assoc. Inform. Sci. Technol. 67(10), 2320–2328 (2016). https://doi.org/10.1002/asi.23572, ISSN 2330–1643

  19. Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical implications when adversarially learning fair representations (Jul 2017). http://arxiv.org/abs/1707.00075

  20. Boratto, L., Fenu, G., Marras, M., Medda, G.: Consumer fairness in recommender systems: contextualizing definitions and mitigations. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 552–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_37

    Chapter  Google Scholar 

  21. Burke, R.: Multisided fairness for recommendation (Jul 2017). http://arxiv.org/abs/1707.00093

  22. Burke, R., Sonboli, N., Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided fairness in recommendation. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 202–214. PMLR (2018). http://proceedings.mlr.press/v81/burke18a.html

  23. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. Association for Computing Machinery, New York (1998). https://doi.org/10.1145/290941.291025

  24. Celis, L.E., Keswani, V.: Implicit diversity in image summarization. Proc. ACM Hum.-Comput. Interact. 4(CSCW2), 1–28 (2020). https://doi.org/10.1145/3415210

    Article  Google Scholar 

  25. Channamsetty, S., Ekstrand, M.D.: Recommender response to diversity and popularity bias in user profiles. In: Proceedings of the 30th Florida Artificial Intelligence Research Society Conference. AAAI Press (May 2017). https://aaai.org/papers/657-flairs-2017-15524/

  26. Chen, I., Johansson, F.D., Sontag, D.: Why is my classifier discriminatory? In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 3539–3550, Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7613-why-is-my-classifier-discriminatory.pdf

  27. Cheng, Q., Yom-Tov, E.: Do search engine helpline notices aid in preventing suicide? analysis of archival data. J. Med. Internet Res. 21(3), e12235 (2019). https://doi.org/10.2196/12235, ISSN 1438–8871

  28. Cramer, H., Garcia-Gathright, J., Reddy, S., Springer, A., Takeo Bouyer, R.: Translation, tracks & data: an algorithmic bias effort in practice. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA 2019, pp. 1–8. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3290607.3299057, ISBN 978-1-4503-5971-9

  29. Cramer, H., et al.: Challenges of incorporating algorithmic fairness into practice: a tutorial at FAccT 2019 (2019). https://algorithmicbiasinpractice.files.wordpress.com/

  30. Crawford, K.: The trouble with bias (Dec 2017). https://youtu.be/fMym_BKWQzk

  31. Dabran-Zivan, S., Baram-Tsabari, A., Shapira, R., Yitshaki, M., Dvorzhitskaia, D., Grinberg, N.: "Is COVID-19 a hoax?": auditing the quality of COVID-19 conspiracy-related information and misinformation in Google search results in four languages. Internet Res. 33(5), 1774–1801 (2023). https://doi.org/10.1108/INTR-07-2022-0560, ISSN 1066–2243

  32. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy settings. Proc. Priv. Enhancing Technol. 2015(1), 92–112 (2015). https://doi.org/10.1515/popets-2015-0007, ISSN 2299–0984

  33. December, J.: Units of analysis for internet communication. J. Comput.-Mediated Commun. 1(4), JCMC143 (1996). https://doi.org/10.1111/j.1083-6101.1996.tb00173.x, ISSN 1083–6101

  34. Deldjoo, Y., et al.: Enhancing children’s experience with recommendation systems. In: Proceedings of the International Workshop on Children & Recommender Systems (2017). https://yasdel.github.io/files/KidRec17_deldjoo.pdf

  35. Deldjoo, Y., Jannach, D., Bellogin, A., Difonzo, A., Zanzonelli, D.: Fairness in recommender systems: Research landscape and future directions. User Model. User-Adapted Interact. (2023). https://doi.org/10.1007/s11257-023-09364-z, ISSN 1573–1391

  36. D’Ignazio, C., Klein, L.F.: Data Feminism. MIT Press (2020). https://data-feminism.mitpress.mit.edu/, ISBN 978-0-262-04400-4

  37. Downs, B., Pera, M.S., Wright, K.L., Kennington, C., Fails, J.A.: KidSpell: making a difference in spellchecking for children. Inter. J. Child-Comput. Interact., 100373 (2021). https://doi.org/10.1016/j.ijcci.2021.100373, ISSN 2212–8689

  38. Dragovic, N., Azpiazu, I.M., Pera, M.S.: From recommendation to curation: when the system becomes your personal docent. In: Proceedings of 5th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS 2018), pp. 37–44 (Oct 2018). http://ceur-ws.org/Vol-2225/paper6.pdf

  39. Dwork, C., Ilvento, C.: Fairness under composition. In: Blum, A. (ed.) 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 124, pp. 33:1–33:20, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPICS.ITCS.2019.33

  40. Ekstrand, M.D., Carterette, B., Diaz, F.: Distributionally-informed recommender system evaluation. ACM Trans. Recommender Syst. (2023). https://doi.org/10.1145/3613455

    Article  Google Scholar 

  41. Ekstrand, M.D., Das, A., Burke, R., Diaz, F.: Fairness in information access systems. Foundat. Trends® Inform. Retrieval 16(1–2), 1–177 (2022). https://doi.org/10.1561/1500000079, ISSN 1554–0669

  42. Ekstrand, M.D., Das, A., Burke, R., Diaz, F.: Fairness in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 679–707, Springer, US (2022). https://doi.org/10.1007/978-1-0716-2197-4_18, ISBN 978-1-07-162197-4

  43. Ekstrand, M.D., Kluver, D.: Exploring author gender in book rating and recommendation. User Model. User-Adapted Interact. 31(3), 377–420 (2021). https://doi.org/10.1007/s11257-020-09284-2, ISSN 0924–1868

  44. Ekstrand, M.D., Pera, M.S.: Matching consumer fairness objectives & strategies for RecSys (Sep 2022). http://arxiv.org/abs/2209.02662

  45. Ekstrand, M.D., et al.: All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 172–186. PMLR (2018). https://proceedings.mlr.press/v81/ekstrand18b.html

  46. Epps-Darling, A., Bouyer, R.T., Cramer, H.: Artist gender representation in music streaming. In: Proceedings of the 21st International Society for Music Information Retrieval Conference, pp. 248–254. ISMIR (Oct 2020). https://program.ismir2020.net/poster_2-11.html

  47. Farrand, T., Mireshghallah, F., Singh, S., Trask, A.: Neither private nor fair: Impact of data imbalance on utility and fairness in differential privacy. In: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, pp. 15–19. Association for Computing Machinery, New York (Nov 2020). https://doi.org/10.1145/3411501.3419419, ISBN 978-1-4503-8088-1

  48. Feng, Y., Shah, C.: Has CEO gender bias really been fixed? Adversarial attacking and improving gender fairness in image search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36(11), pp. 11882–11890 (Jun 2022). https://doi.org/10.1609/aaai.v36i11.21445, ISSN 2374–3468

  49. Fish, B., Bashardoust, A., Boyd, D., Friedler, S., Scheidegger, C., Venkatasubramanian, S.: Gaps in information access in social networks? In: WWW 2019: The World Wide Web Conference, pp. 480–490. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3308558.3313680

  50. Fourney, A., Ringel Morris, M., Ali, A., Vonessen, L.: Assessing the readability of web search results for searchers with dyslexia. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1069–1072, Association for Computing Machinery, New York. (Jun 2018), https://doi.org/10.1145/3209978.3210072

  51. Gao, R., Ge, Y., Shah, C.: FAIR: Fairness-aware information retrieval evaluation. J. Assoc. Inform. Sci. Technol. 73(10), 1461–1473 (2022). https://doi.org/10.1002/asi.24648, ISSN 2330–1643,

  52. Goel, N., Faltings, B.: Crowdsourcing with fairness, diversity and budget constraints. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 297–304. Association for Computing Machinery, New York (Jan 2019). https://doi.org/10.1145/3306618.3314282

  53. Gossen, T., Nitsche, M., Vos, J., Nürnberger, A.: Adaptation of a search user interface towards user needs: A prototype study with children & adults. In: Proceedings of the Symposium on Human-Computer Interaction and Information Retrieval, pp. 1–10. Association for Computing Machinery, New York (Oct 2013). https://doi.org/10.1145/2528394.2528397, ISBN 978-1-4503-2570-7

  54. Gunawardana, A., Shani, G., Yogev, S.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, third edn., pp. 547–601, Springer, US (2022). https://doi.org/10.1007/978-1-0716-2197-4_15, ISBN 978-1-07-162196-7

  55. Harambam, J., Bountouridis, D., Makhortykh, M., van Hoboken, J.: Designing for the better by taking users into account: A qualitative evaluation of user control mechanisms in (news) recommender systems. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 69–77. Association for Computing Machinery, New York (Sep 2019), https://doi.org/10.1145/3298689.3347014

  56. Helberger, N.: On the democratic role of news recommenders. Digital J. 7(8), 993–1012 (2019). https://doi.org/10.1080/21670811.2019.1623700, ISSN 2167–0811

  57. Holstein, K., Wortman Vaughan, J., Daumé, III, H., Dudik, M., Wallach, H.: Improving fairness in machine learning systems: What do industry practitioners need? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–16. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3290605.3300830

  58. Huang, W., Labille, K., Wu, X., Lee, D., Heffernan, N.: Achieving User-Side Fairness in Contextual Bandits. Hum.-Centric Intel. Syst. 2(3), 81–94 (2022. https://doi.org/10.1007/s44230-022-00008-w, ISSN 2667–1336

  59. IMDb: Se7en (1995) - IMDb (1995). http://www.imdb.com/title/tt0114369/parentalguide

  60. Jacobs, A.Z., Wallach, H.: Measurement and fairness. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 375–385, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3442188.3445901

  61. Joachims, T., Swaminathan, A., Schnabel, T.: Unbiased learning-to-rank with biased feedback. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, California (Jul 2018). https://doi.org/10.24963/ijcai.2018/738

  62. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Recommendation independence. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 187–201. PMLR, New York (2018). http://proceedings.mlr.press/v81/kamishima18a.html

  63. Karako, C., Manggala, P.: Using image fairness representations in diversity-based re-ranking for recommendations. In: Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 23–28. Association for Computing Machinery, New York. (Jul 2018). https://doi.org/10.1145/3213586.3226206

  64. Katzman, J., et al.: Taxonomizing and measuring representational harms: a look at image tagging. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37(12), pp. 14277–14285 (Jun 2023). https://doi.org/10.1609/aaai.v37i12.26670, ISSN 2374–3468

  65. Landoni, M., Matteri, D., Murgia, E., Huibers, T., Pera, M.S.: Sonny, cerca! evaluating the impact of using a vocal assistant to search at school. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 101–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_6

    Chapter  Google Scholar 

  66. Lawrence, E.E.: On the problem of oppressive tastes in the public library. J. Documentation 76(5), 1091–1107 (2020). https://doi.org/10.1108/JD-01-2020-0002, ISSN 0022–0418

  67. Leonhardt, J., Anand, A., Khosla, M.: User fairness in recommender systems. In: Companion Proceedings of the The Web Conference 2018, pp. 101–102, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (Apr 2018). https://doi.org/10.1145/3184558.3186949

  68. Li, Y., Chen, H., Fu, Z., Ge, Y., Zhang, Y.: User-oriented fairness in recommendation. In: Proceedings of the Web Conference 2021, pp. 624–632. Association for Computing Machinery, New York (Apr 2021). https://doi.org/10.1145/3442381.3449866

  69. Madrazo Azpiazu, I., Dragovic, N., Anuyah, O., Pera, M.S.: Looking for the movie seven or Sven from the movie Frozen? A multi-perspective strategy for recommending queries for children. In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, pp. 92–101. Association for Computing Machinery, New York (Mar 2018). https://doi.org/10.1145/3176349.3176379

  70. Mauro, N., Ardissono, L., Cena, F.: Personalized recommendation of PoIs to people with autism. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 163–172. Association for Computing Machinery, New York (Jul 2020). https://doi.org/10.1145/3340631.3394845

  71. McDonald, G., Macdonald, C., Ounis, I.: Search results diversification for effective fair ranking in academic search. Inform. Retrieval J. 25(1), 1–26 (2022). https://doi.org/10.1007/s10791-021-09399-z, ISSN 1573–7659

  72. McNealy, J., Cramer, H.: Trust and representation in recommender systems. In: ICA 2022 (2022)

    Google Scholar 

  73. Mehrotra, R., Anderson, A., Diaz, F., Sharma, A., Wallach, H., Yilmaz, E.: Auditing search engines for differential satisfaction across demographics. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 626–633, International World Wide Web Conferences Steering Committee (2017). https://doi.org/10.1145/3041021.3054197

  74. Mehrotra, R., Carterette, B., Li, Y., Yao, Q., Gao, C., Kwok, J., Yang, Q., Guyon, I.: Advances in recommender systems: from multi-stakeholder marketplaces to automated RecSys. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3533–3534. Association for Computing Machinery, New York (Aug 2020). https://doi.org/10.1145/3394486.3406463, ISBN 978-1-4503-7998-4

  75. Michiels, L., Leysen, J., Smets, A., Goethals, B.: What are filter bubbles really? A review of the conceptual and empirical work. In: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2022 Adjunct, pp. 274–279. Association for Computing Machinery, New York (Jul 2022). https://doi.org/10.1145/3511047.3538028, ISBN 978-1-4503-9232-7

  76. Milton, A., Pera, M.S.: Into the unknown: exploration of search engines’ responses to users with depression and anxiety. ACM Trans. Web 17(4), 25:1–25:29 (Jul 2023). https://doi.org/10.1145/3580283, ISSN 1559–1131

  77. Moore, M., Bias, R.G., Prentice, K., Fletcher, R., Vaughn, T.: Web usability testing with a Hispanic medically underserved population. J. Med. Library Assoc. JMLA 97(2), 114–121 (Apr 2009). https://doi.org/10.3163/1536-5050.97.2.008, ISSN 1536–5050, 1558–9439

  78. Mosseri, A.: Instagram ranking explained (May 2023). https://about.instagram.com/blog/announcements/instagram-ranking-explained/

  79. Murgia, E., Abbasiantaeb, Z., Aliannejadi, M., Huibers, T., Landoni, M., Pera, M.S.: ChatGPT in the classroom: A preliminary exploration on the feasibility of adapting ChatGPT to support children’s information discovery. In: Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, pp. 22–27. Association for Computing Machinery, New York (Jun 2023). https://doi.org/10.1145/3563359.3597399, ISBN 978-1-4503-9891-6

  80. Murgia, E., Landoni, M., Huibers, T., Fails, J.A., Pera, M.S.: The seven layers of complexity of recommender systems for children in educational contexts. In: Proceedings of the Workshop on Recommendation in Complex Scenarios Co-Located with 13th ACM Conference on Recommender Systems, vol. 2449. CEUR-WS (Sep 2019). http://ceur-ws.org/Vol-2449/paper1.pdf

  81. Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: CPFair: personalized consumer and producer fairness re-ranking for recommender systems. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 770–779, Association for Computing Machinery, New York (Jul 2022). https://doi.org/10.1145/3477495.3531959

  82. Netflix: Children & family movies (August 2022). https://www.netflix.com/browse/genre/783

  83. Ng, Y.K., Pera, M.S.: Recommending social-interactive games for adults with autism spectrum disorders (ASD). In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 209–213. Association for Computing Machinery, New York (Sep 2018). https://doi.org/10.1145/3240323.3240405

  84. Odinma, A.C., Butakov, S., Grakhov, E.: Improving the browsing experience in a bandwidth limited environment through traffic management. Inform. Technol. Developm. 17(4), 306–318 (2011). https://doi.org/10.1080/02681102.2011.568224, ISSN 0268–1102

  85. Olteanu, A., Diaz, F., Kazai, G.: When are search completion suggestions problematic? Proc. ACM Hum.-Comput. Interact. 4(CSCW2), 171:1–171:25 (2020). https://doi.org/10.1145/3415242

  86. Pardes, A.: Feeling stressed out? Pinterest wants to help. Wired (Jul 2019). https://www.wired.com/story/pinterest-compassionate-search/

  87. Pariser, E.: The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. Penguin (May 2011), ISBN 978-1-101-51512-9

    Google Scholar 

  88. Partarakis, N., Doulgeraki, C., Leonidis, A., Antona, M., Stephanidis, C.: User interface adaptation of web-based services on the semantic web. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5615, pp. 711–719. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02710-9_79

    Chapter  Google Scholar 

  89. Patton, D.U.: Social work thinking for UX and AI design. Interactions 27(2), 86–89 (2020). https://doi.org/10.1145/3380535, ISSN 1072–5520

  90. Pera, M.S., Murgia, E., Landoni, M., Huibers, T.: With a little help from my friends: Use of recommendations at school. In: Proceedings of ACM RecSys 2019 Late-breaking Results, CEUR-WS, vol. 2431. CEUR (2019). http://ceur-ws.org/Vol-2431/paper13.pdf

  91. Pera, M.S., Ng, Y.K.: Automating readers’ advisory to make book recommendations for K-12 readers. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 9–16. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2645710.2645721

  92. Pinterest: Pinterest introduces first-of-its-kind hair pattern search for inclusive beauty results (Aug 2021). https://newsroom.pinterest.com/en-gb/post/pinterest-introduces-first-of-its-kind-hair-pattern-search-for-inclusive-beauty-results

  93. Qin, X., Dou, Z., Wen, J.R.: Diversifying search results using self-attention network. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1265–1274. Association for Computing Machinery, New York (Oct 2020). https://doi.org/10.1145/3340531.3411914, ISBN 978-1-4503-6859-9

  94. Raj, A., Ekstrand, M.D.: Fire dragon and unicorn princess: gender stereotypes and children’s products in search engine responses. In: Proceedings of the 2022 SIGIR Workshop On eCommerce (Jun 2022). http://arxiv.org/abs/2206.13747

  95. Rakova, B., Yang, J., Cramer, H., Chowdhury, R.: Where responsible AI meets reality: Practitioner perspectives on enablers for shifting organizational practices (Jun 2020). http://arxiv.org/abs/2006.12358

  96. Rastegarpanah, B., Gummadi, K.P., Crovella, M.: Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 231–239. ACM (Jan 2019). https://doi.org/10.1145/3289600.3291002

  97. Riedl, J., Konstan, J.: Word of Mouse. Warner Books (2002), ISBN 978-0-446-53003-3

    Google Scholar 

  98. Rodriguez, M., Posse, C., Zhang, E.: Multiple objective optimization in recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 11–18. Association for Computing Machinery, New York (Sep 2012). https://doi.org/10.1145/2365952.2365961, ISBN 978-1-4503-1270-7

  99. Rothschild, M., Horiuchi, T., Maxey, M.: Evaluating “just right" in EdTech recommendation. In: KidRec ’19: Workshop in International and Interdisciplinary Perspectives on Children & Recommender and Information Retrieval Systems, Co-located with ACM IDC (2019). https://kidrec.github.io/papers/KidRec_2019_paper_6.pdf

  100. Shrestha, A., Spezzano, F., Pera, M.S.: An empirical analysis of collaborative recommender systems robustness to shilling attacks. In: Proceedings of the Second Workshop on Online Misinformation- and Harm-Aware Recommender Systems Co-Located with RecSys 2021, CEUR-WS, vol. 3012, pp. 45–57. CEUR (Oct 2021). http://ceur-ws.org/Vol-3012/OHARS2021-paper4.pdf

  101. Smith, J.J., Beattie, L., Cramer, H.: Scoping fairness objectives and identifying fairness metrics for recommender systems: The practitioners’ perspective. In: Proceedings of the ACM Web Conference 2023, pp. 3648–3659, Association for Computing Machinery, New York (Apr 2023). https://doi.org/10.1145/3543507.3583204, ISBN 978-1-4503-9416-1

  102. Sofaer, S.: Qualitative methods: what are they and why use them? Health Serv. Res. 34(5 Pt 2), 1101–1118 (1999). https://pubmed.ncbi.nlm.nih.gov/10591275/, ISSN 0017-9124

  103. Sonboli, N., Burke, R., Ekstrand, M., Mehrotra, R.: The multisided complexity of fairness in recommender systems. AI Mag. 43(2), 164–176 (2022). https://doi.org/10.1002/aaai.12054, ISSN 0738–4602

  104. Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 154–162. Association for Computing Machinery (Sep 2018). https://doi.org/10.1145/3240323.3240372

  105. Trust & Safety Professionals Association: Abuse types (Jun 2021). https://www.tspa.org/curriculum/ts-fundamentals/policy/abuse-types/

  106. Tsiakas, K., Barakova, E., Khan, J.V., Markopoulos, P.: BrainHood: towards an explainable recommendation system for self-regulated cognitive training in children. In: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–6. Association for Computing Machinery, New York (Jun 2020). https://doi.org/10.1145/3389189.3398004

  107. Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., Tsaparas, P.: Link recommendations for PageRank fairness. In: Proceedings of the ACM Web Conference 2022, pp. 3541–3551. Association for Computing Machinery, New York (Apr 2022). https://doi.org/10.1145/3485447.3512249, ISBN 978-1-4503-9096-5

  108. Valentim, I., Lourenço, N., Antunes, N.: The impact of data preparation on the fairness of software systems. In: 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE), pp. 391–401 (Oct 2019). https://doi.org/10.1109/ISSRE.2019.00046, ISSN 2332–6549

  109. van Alstyne, M., Brynjolfsson, E.: Global village or cyber-balkans? Modeling and measuring the integration of electronic communities. Manag. Sci. 51(6), 851–868 (2005). https://doi.org/10.1287/mnsc.1050.0363, ISSN 0025–1909

  110. Vrijenhoek, S., Kaya, M., Metoui, N., Möller, J., Odijk, D., Helberger, N.: Recommenders with a mission: Assessing diversity in news recommendations. In: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, pp. 173–183. Association for Computing Machinery, New York (Mar 2021). https://doi.org/10.1145/3406522.3446019, ISBN 978-1-4503-8055-3

  111. Wang, L., Joachims, T.: User fairness, item fairness, and diversity for rankings in two-sided markets. In: Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 23–41. Association for Computing Machinery, New York (Jul 2021). https://doi.org/10.1145/3471158.3472260

  112. Wortman Vaughan, J.: Transparency and intelligibility throughout the machine learning life cycle (Jan 2020). https://www.microsoft.com/en-us/research/video/transparency-and-intelligibility-throughout-the-machine-learning-life-cycle/

  113. Wu, H., Mitra, B., Ma, C., Diaz, F., Liu, X.: Joint multisided exposure fairness for recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 703–714. ACM (Jul 2022), https://doi.org/10.1145/3477495.3532007

  114. Yang, Y., Zhang, C., Fan, C., Mostafavi, A., Hu, X.: Towards fairness-aware disaster informatics: An interdisciplinary perspective. IEEE Access 8, 201040–201054 (2020). https://doi.org/10.1109/ACCESS.2020.3035714, ISSN 2169–3536

  115. Yao, S., Huang, B.: Beyond parity: Fairness objectives for collaborative filtering. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp. 2925–2934. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6885-beyond-parity-fairness-objectives-for-collaborative-filtering.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Ekstrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekstrand, M.D., Beattie, L., Pera, M.S., Cramer, H. (2024). Not Just Algorithms: Strategically Addressing Consumer Impacts in Information Retrieval. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14611. Springer, Cham. https://doi.org/10.1007/978-3-031-56066-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56066-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56065-1

  • Online ISBN: 978-3-031-56066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics