Abstract
Information Retrieval (IR) systems have a wide range of impacts on consumers. We offer maps to help identify goals IR systems could—or should—strive for, and guide the process of scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to address these effects. Grounded in prior work on scoping algorithmic impact efforts, our goal is to promote and facilitate research that (1) is grounded in impacts on information consumers, contextualizing these impacts in the broader landscape of positive and negative consumer experience; (2) takes a broad view of the possible means of changing or improving that impact, including non-technical interventions; and (3) uses operationalizations and strategies that are well-matched to the technical, social, ethical, legal, and other dimensions of the specific problem in question.
Partly supported by the National Science Foundation on Grant 17-51278.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We borrow the concept of intervention from public health, behavioral health, and education to concisely express the idea of taking action to modify a system or its environment in order to address a problem (or enhance a positive phenomena). While this language is not widely used in IR research, we propose that it is useful for discussing how changes in a system’s operation and outcomes can be effected.
References
ABC Mouse (August 2022). https://www.abcmouse.com/
Biblionasium (August 2022). https://www.biblionasium.com/
Pickatale (August 2022). https://pickatale.com/
Abdollahpouri, H., et al.: Multistakeholder recommendation: survey and research directions. User Model. User-Adapted Interact. 30(1), 127–158 (2020). https://doi.org/10.1007/s11257-019-09256-1, ISSN 0924–1868
Agarwal, A., Zaitsev, I., Wang, X., Li, C., Najork, M., Joachims, T.: Estimating position bias without intrusive interventions. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 474–482, Association for Computing Machinery, New York. (Jan 2019), https://doi.org/10.1145/3289600.3291017
Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., Rieke, A.: Discrimination through optimization: how facebook’s ad delivery can lead to biased outcomes. Proc. ACM Hum.-Comput. Interact. 3(CSCW), 1–30 (2019). https://doi.org/10.1145/3359301
Altman, D.G., Bland, J.M.: Statistics notes: units of analysis. BMJ 314(7098), 1874 (1997). https://doi.org/10.1136/bmj.314.7098.1874, ISSN 0959–8138, 1468–5833
Andalibi, N., Garcia, P.: Sensemaking and coping after pregnancy loss. Proc. ACM Hum.-Comput. Interact. 5(CSCW1), 1–32 (2021). https://doi.org/10.1145/3449201, ISSN 2573–0142
Antona, M., Savidis, A., Stephanidis, C.: A process-oriented interactive design environment for automatic user-interface adaptation. Inter. J. Hum.-Comput. Interact. 20(2), 79–116 (2006). https://doi.org/10.1207/s15327590ijhc2002_2, ISSN 1044–7318
Anuyah, O., Milton, A., Green, M., Pera, M.S.: An empirical analysis of search engines’ response to web search queries associated with the classroom setting. Aslib J. Inform. Manag. 72(1), 88–111 (2020). https://doi.org/10.1108/AJIM-06-2019-0143, ISSN 2050–3806
Banskota, A., Ng, Y.K.: Recommending video games to adults with autism spectrum disorder for social-skill enhancement. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 14–22, Association for Computing Machinery, New York (Jul 2020), https://doi.org/10.1145/3340631.3394867
Barocas, S., Crawford, K., Shapiro, A., Wallach, H.: The problem wtih bias: Allocative versus representational harms in machine learning. In: 9th Annual Conference of the Special Interest Group for Computing, Information and Society (2017)
Barocas, S., et al.: Designing disaggregated evaluations of AI systems: choices, considerations, and tradeoffs. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 368–378, Association for Computing Machinery, New York (Jul 2021). https://doi.org/10.1145/3461702.3462610
Beattie, L., Taber, D., Cramer, H.: Challenges in translating research to practice for evaluating fairness and bias in recommendation systems. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 528–530, Association for Computing Machinery, New York (Sep 2022). https://doi.org/10.1145/3523227.3547403
Becker, C.D., Ostrom, E.: Human ecology and resource sustainability: the importance of institutional diversity. Annal Rev. Ecol. Systematics 26(1), 113–133 (1995), https://doi.org/10.1146/annurev.es.26.110195.000553, ISSN 0066–4162
Belkin, N.J., Robertson, S.E.: Some ethical and political implications of theoretical research in information science. In: Proceedings of the ASIS Annual Meeting (1976). https://www.researchgate.net/publication/255563562
Benjamin, R.: Race after Technology: Abolitionist Tools for the New Jim Code. Polity (2019), ISBN 978-1-5095-2640-6
Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information-searching behavior? The case of Google. J. Assoc. Inform. Sci. Technol. 67(10), 2320–2328 (2016). https://doi.org/10.1002/asi.23572, ISSN 2330–1643
Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical implications when adversarially learning fair representations (Jul 2017). http://arxiv.org/abs/1707.00075
Boratto, L., Fenu, G., Marras, M., Medda, G.: Consumer fairness in recommender systems: contextualizing definitions and mitigations. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 552–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_37
Burke, R.: Multisided fairness for recommendation (Jul 2017). http://arxiv.org/abs/1707.00093
Burke, R., Sonboli, N., Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided fairness in recommendation. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 202–214. PMLR (2018). http://proceedings.mlr.press/v81/burke18a.html
Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. Association for Computing Machinery, New York (1998). https://doi.org/10.1145/290941.291025
Celis, L.E., Keswani, V.: Implicit diversity in image summarization. Proc. ACM Hum.-Comput. Interact. 4(CSCW2), 1–28 (2020). https://doi.org/10.1145/3415210
Channamsetty, S., Ekstrand, M.D.: Recommender response to diversity and popularity bias in user profiles. In: Proceedings of the 30th Florida Artificial Intelligence Research Society Conference. AAAI Press (May 2017). https://aaai.org/papers/657-flairs-2017-15524/
Chen, I., Johansson, F.D., Sontag, D.: Why is my classifier discriminatory? In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 3539–3550, Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7613-why-is-my-classifier-discriminatory.pdf
Cheng, Q., Yom-Tov, E.: Do search engine helpline notices aid in preventing suicide? analysis of archival data. J. Med. Internet Res. 21(3), e12235 (2019). https://doi.org/10.2196/12235, ISSN 1438–8871
Cramer, H., Garcia-Gathright, J., Reddy, S., Springer, A., Takeo Bouyer, R.: Translation, tracks & data: an algorithmic bias effort in practice. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA 2019, pp. 1–8. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3290607.3299057, ISBN 978-1-4503-5971-9
Cramer, H., et al.: Challenges of incorporating algorithmic fairness into practice: a tutorial at FAccT 2019 (2019). https://algorithmicbiasinpractice.files.wordpress.com/
Crawford, K.: The trouble with bias (Dec 2017). https://youtu.be/fMym_BKWQzk
Dabran-Zivan, S., Baram-Tsabari, A., Shapira, R., Yitshaki, M., Dvorzhitskaia, D., Grinberg, N.: "Is COVID-19 a hoax?": auditing the quality of COVID-19 conspiracy-related information and misinformation in Google search results in four languages. Internet Res. 33(5), 1774–1801 (2023). https://doi.org/10.1108/INTR-07-2022-0560, ISSN 1066–2243
Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy settings. Proc. Priv. Enhancing Technol. 2015(1), 92–112 (2015). https://doi.org/10.1515/popets-2015-0007, ISSN 2299–0984
December, J.: Units of analysis for internet communication. J. Comput.-Mediated Commun. 1(4), JCMC143 (1996). https://doi.org/10.1111/j.1083-6101.1996.tb00173.x, ISSN 1083–6101
Deldjoo, Y., et al.: Enhancing children’s experience with recommendation systems. In: Proceedings of the International Workshop on Children & Recommender Systems (2017). https://yasdel.github.io/files/KidRec17_deldjoo.pdf
Deldjoo, Y., Jannach, D., Bellogin, A., Difonzo, A., Zanzonelli, D.: Fairness in recommender systems: Research landscape and future directions. User Model. User-Adapted Interact. (2023). https://doi.org/10.1007/s11257-023-09364-z, ISSN 1573–1391
D’Ignazio, C., Klein, L.F.: Data Feminism. MIT Press (2020). https://data-feminism.mitpress.mit.edu/, ISBN 978-0-262-04400-4
Downs, B., Pera, M.S., Wright, K.L., Kennington, C., Fails, J.A.: KidSpell: making a difference in spellchecking for children. Inter. J. Child-Comput. Interact., 100373 (2021). https://doi.org/10.1016/j.ijcci.2021.100373, ISSN 2212–8689
Dragovic, N., Azpiazu, I.M., Pera, M.S.: From recommendation to curation: when the system becomes your personal docent. In: Proceedings of 5th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS 2018), pp. 37–44 (Oct 2018). http://ceur-ws.org/Vol-2225/paper6.pdf
Dwork, C., Ilvento, C.: Fairness under composition. In: Blum, A. (ed.) 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 124, pp. 33:1–33:20, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPICS.ITCS.2019.33
Ekstrand, M.D., Carterette, B., Diaz, F.: Distributionally-informed recommender system evaluation. ACM Trans. Recommender Syst. (2023). https://doi.org/10.1145/3613455
Ekstrand, M.D., Das, A., Burke, R., Diaz, F.: Fairness in information access systems. Foundat. Trends® Inform. Retrieval 16(1–2), 1–177 (2022). https://doi.org/10.1561/1500000079, ISSN 1554–0669
Ekstrand, M.D., Das, A., Burke, R., Diaz, F.: Fairness in recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 679–707, Springer, US (2022). https://doi.org/10.1007/978-1-0716-2197-4_18, ISBN 978-1-07-162197-4
Ekstrand, M.D., Kluver, D.: Exploring author gender in book rating and recommendation. User Model. User-Adapted Interact. 31(3), 377–420 (2021). https://doi.org/10.1007/s11257-020-09284-2, ISSN 0924–1868
Ekstrand, M.D., Pera, M.S.: Matching consumer fairness objectives & strategies for RecSys (Sep 2022). http://arxiv.org/abs/2209.02662
Ekstrand, M.D., et al.: All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 172–186. PMLR (2018). https://proceedings.mlr.press/v81/ekstrand18b.html
Epps-Darling, A., Bouyer, R.T., Cramer, H.: Artist gender representation in music streaming. In: Proceedings of the 21st International Society for Music Information Retrieval Conference, pp. 248–254. ISMIR (Oct 2020). https://program.ismir2020.net/poster_2-11.html
Farrand, T., Mireshghallah, F., Singh, S., Trask, A.: Neither private nor fair: Impact of data imbalance on utility and fairness in differential privacy. In: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, pp. 15–19. Association for Computing Machinery, New York (Nov 2020). https://doi.org/10.1145/3411501.3419419, ISBN 978-1-4503-8088-1
Feng, Y., Shah, C.: Has CEO gender bias really been fixed? Adversarial attacking and improving gender fairness in image search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36(11), pp. 11882–11890 (Jun 2022). https://doi.org/10.1609/aaai.v36i11.21445, ISSN 2374–3468
Fish, B., Bashardoust, A., Boyd, D., Friedler, S., Scheidegger, C., Venkatasubramanian, S.: Gaps in information access in social networks? In: WWW 2019: The World Wide Web Conference, pp. 480–490. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3308558.3313680
Fourney, A., Ringel Morris, M., Ali, A., Vonessen, L.: Assessing the readability of web search results for searchers with dyslexia. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1069–1072, Association for Computing Machinery, New York. (Jun 2018), https://doi.org/10.1145/3209978.3210072
Gao, R., Ge, Y., Shah, C.: FAIR: Fairness-aware information retrieval evaluation. J. Assoc. Inform. Sci. Technol. 73(10), 1461–1473 (2022). https://doi.org/10.1002/asi.24648, ISSN 2330–1643,
Goel, N., Faltings, B.: Crowdsourcing with fairness, diversity and budget constraints. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 297–304. Association for Computing Machinery, New York (Jan 2019). https://doi.org/10.1145/3306618.3314282
Gossen, T., Nitsche, M., Vos, J., Nürnberger, A.: Adaptation of a search user interface towards user needs: A prototype study with children & adults. In: Proceedings of the Symposium on Human-Computer Interaction and Information Retrieval, pp. 1–10. Association for Computing Machinery, New York (Oct 2013). https://doi.org/10.1145/2528394.2528397, ISBN 978-1-4503-2570-7
Gunawardana, A., Shani, G., Yogev, S.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, third edn., pp. 547–601, Springer, US (2022). https://doi.org/10.1007/978-1-0716-2197-4_15, ISBN 978-1-07-162196-7
Harambam, J., Bountouridis, D., Makhortykh, M., van Hoboken, J.: Designing for the better by taking users into account: A qualitative evaluation of user control mechanisms in (news) recommender systems. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 69–77. Association for Computing Machinery, New York (Sep 2019), https://doi.org/10.1145/3298689.3347014
Helberger, N.: On the democratic role of news recommenders. Digital J. 7(8), 993–1012 (2019). https://doi.org/10.1080/21670811.2019.1623700, ISSN 2167–0811
Holstein, K., Wortman Vaughan, J., Daumé, III, H., Dudik, M., Wallach, H.: Improving fairness in machine learning systems: What do industry practitioners need? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–16. Association for Computing Machinery, New York (May 2019). https://doi.org/10.1145/3290605.3300830
Huang, W., Labille, K., Wu, X., Lee, D., Heffernan, N.: Achieving User-Side Fairness in Contextual Bandits. Hum.-Centric Intel. Syst. 2(3), 81–94 (2022. https://doi.org/10.1007/s44230-022-00008-w, ISSN 2667–1336
IMDb: Se7en (1995) - IMDb (1995). http://www.imdb.com/title/tt0114369/parentalguide
Jacobs, A.Z., Wallach, H.: Measurement and fairness. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 375–385, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3442188.3445901
Joachims, T., Swaminathan, A., Schnabel, T.: Unbiased learning-to-rank with biased feedback. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, California (Jul 2018). https://doi.org/10.24963/ijcai.2018/738
Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Recommendation independence. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, vol. 81, pp. 187–201. PMLR, New York (2018). http://proceedings.mlr.press/v81/kamishima18a.html
Karako, C., Manggala, P.: Using image fairness representations in diversity-based re-ranking for recommendations. In: Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 23–28. Association for Computing Machinery, New York. (Jul 2018). https://doi.org/10.1145/3213586.3226206
Katzman, J., et al.: Taxonomizing and measuring representational harms: a look at image tagging. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37(12), pp. 14277–14285 (Jun 2023). https://doi.org/10.1609/aaai.v37i12.26670, ISSN 2374–3468
Landoni, M., Matteri, D., Murgia, E., Huibers, T., Pera, M.S.: Sonny, cerca! evaluating the impact of using a vocal assistant to search at school. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 101–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_6
Lawrence, E.E.: On the problem of oppressive tastes in the public library. J. Documentation 76(5), 1091–1107 (2020). https://doi.org/10.1108/JD-01-2020-0002, ISSN 0022–0418
Leonhardt, J., Anand, A., Khosla, M.: User fairness in recommender systems. In: Companion Proceedings of the The Web Conference 2018, pp. 101–102, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (Apr 2018). https://doi.org/10.1145/3184558.3186949
Li, Y., Chen, H., Fu, Z., Ge, Y., Zhang, Y.: User-oriented fairness in recommendation. In: Proceedings of the Web Conference 2021, pp. 624–632. Association for Computing Machinery, New York (Apr 2021). https://doi.org/10.1145/3442381.3449866
Madrazo Azpiazu, I., Dragovic, N., Anuyah, O., Pera, M.S.: Looking for the movie seven or Sven from the movie Frozen? A multi-perspective strategy for recommending queries for children. In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, pp. 92–101. Association for Computing Machinery, New York (Mar 2018). https://doi.org/10.1145/3176349.3176379
Mauro, N., Ardissono, L., Cena, F.: Personalized recommendation of PoIs to people with autism. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 163–172. Association for Computing Machinery, New York (Jul 2020). https://doi.org/10.1145/3340631.3394845
McDonald, G., Macdonald, C., Ounis, I.: Search results diversification for effective fair ranking in academic search. Inform. Retrieval J. 25(1), 1–26 (2022). https://doi.org/10.1007/s10791-021-09399-z, ISSN 1573–7659
McNealy, J., Cramer, H.: Trust and representation in recommender systems. In: ICA 2022 (2022)
Mehrotra, R., Anderson, A., Diaz, F., Sharma, A., Wallach, H., Yilmaz, E.: Auditing search engines for differential satisfaction across demographics. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 626–633, International World Wide Web Conferences Steering Committee (2017). https://doi.org/10.1145/3041021.3054197
Mehrotra, R., Carterette, B., Li, Y., Yao, Q., Gao, C., Kwok, J., Yang, Q., Guyon, I.: Advances in recommender systems: from multi-stakeholder marketplaces to automated RecSys. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3533–3534. Association for Computing Machinery, New York (Aug 2020). https://doi.org/10.1145/3394486.3406463, ISBN 978-1-4503-7998-4
Michiels, L., Leysen, J., Smets, A., Goethals, B.: What are filter bubbles really? A review of the conceptual and empirical work. In: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2022 Adjunct, pp. 274–279. Association for Computing Machinery, New York (Jul 2022). https://doi.org/10.1145/3511047.3538028, ISBN 978-1-4503-9232-7
Milton, A., Pera, M.S.: Into the unknown: exploration of search engines’ responses to users with depression and anxiety. ACM Trans. Web 17(4), 25:1–25:29 (Jul 2023). https://doi.org/10.1145/3580283, ISSN 1559–1131
Moore, M., Bias, R.G., Prentice, K., Fletcher, R., Vaughn, T.: Web usability testing with a Hispanic medically underserved population. J. Med. Library Assoc. JMLA 97(2), 114–121 (Apr 2009). https://doi.org/10.3163/1536-5050.97.2.008, ISSN 1536–5050, 1558–9439
Mosseri, A.: Instagram ranking explained (May 2023). https://about.instagram.com/blog/announcements/instagram-ranking-explained/
Murgia, E., Abbasiantaeb, Z., Aliannejadi, M., Huibers, T., Landoni, M., Pera, M.S.: ChatGPT in the classroom: A preliminary exploration on the feasibility of adapting ChatGPT to support children’s information discovery. In: Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, pp. 22–27. Association for Computing Machinery, New York (Jun 2023). https://doi.org/10.1145/3563359.3597399, ISBN 978-1-4503-9891-6
Murgia, E., Landoni, M., Huibers, T., Fails, J.A., Pera, M.S.: The seven layers of complexity of recommender systems for children in educational contexts. In: Proceedings of the Workshop on Recommendation in Complex Scenarios Co-Located with 13th ACM Conference on Recommender Systems, vol. 2449. CEUR-WS (Sep 2019). http://ceur-ws.org/Vol-2449/paper1.pdf
Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: CPFair: personalized consumer and producer fairness re-ranking for recommender systems. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 770–779, Association for Computing Machinery, New York (Jul 2022). https://doi.org/10.1145/3477495.3531959
Netflix: Children & family movies (August 2022). https://www.netflix.com/browse/genre/783
Ng, Y.K., Pera, M.S.: Recommending social-interactive games for adults with autism spectrum disorders (ASD). In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 209–213. Association for Computing Machinery, New York (Sep 2018). https://doi.org/10.1145/3240323.3240405
Odinma, A.C., Butakov, S., Grakhov, E.: Improving the browsing experience in a bandwidth limited environment through traffic management. Inform. Technol. Developm. 17(4), 306–318 (2011). https://doi.org/10.1080/02681102.2011.568224, ISSN 0268–1102
Olteanu, A., Diaz, F., Kazai, G.: When are search completion suggestions problematic? Proc. ACM Hum.-Comput. Interact. 4(CSCW2), 171:1–171:25 (2020). https://doi.org/10.1145/3415242
Pardes, A.: Feeling stressed out? Pinterest wants to help. Wired (Jul 2019). https://www.wired.com/story/pinterest-compassionate-search/
Pariser, E.: The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. Penguin (May 2011), ISBN 978-1-101-51512-9
Partarakis, N., Doulgeraki, C., Leonidis, A., Antona, M., Stephanidis, C.: User interface adaptation of web-based services on the semantic web. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5615, pp. 711–719. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02710-9_79
Patton, D.U.: Social work thinking for UX and AI design. Interactions 27(2), 86–89 (2020). https://doi.org/10.1145/3380535, ISSN 1072–5520
Pera, M.S., Murgia, E., Landoni, M., Huibers, T.: With a little help from my friends: Use of recommendations at school. In: Proceedings of ACM RecSys 2019 Late-breaking Results, CEUR-WS, vol. 2431. CEUR (2019). http://ceur-ws.org/Vol-2431/paper13.pdf
Pera, M.S., Ng, Y.K.: Automating readers’ advisory to make book recommendations for K-12 readers. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 9–16. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2645710.2645721
Pinterest: Pinterest introduces first-of-its-kind hair pattern search for inclusive beauty results (Aug 2021). https://newsroom.pinterest.com/en-gb/post/pinterest-introduces-first-of-its-kind-hair-pattern-search-for-inclusive-beauty-results
Qin, X., Dou, Z., Wen, J.R.: Diversifying search results using self-attention network. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1265–1274. Association for Computing Machinery, New York (Oct 2020). https://doi.org/10.1145/3340531.3411914, ISBN 978-1-4503-6859-9
Raj, A., Ekstrand, M.D.: Fire dragon and unicorn princess: gender stereotypes and children’s products in search engine responses. In: Proceedings of the 2022 SIGIR Workshop On eCommerce (Jun 2022). http://arxiv.org/abs/2206.13747
Rakova, B., Yang, J., Cramer, H., Chowdhury, R.: Where responsible AI meets reality: Practitioner perspectives on enablers for shifting organizational practices (Jun 2020). http://arxiv.org/abs/2006.12358
Rastegarpanah, B., Gummadi, K.P., Crovella, M.: Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 231–239. ACM (Jan 2019). https://doi.org/10.1145/3289600.3291002
Riedl, J., Konstan, J.: Word of Mouse. Warner Books (2002), ISBN 978-0-446-53003-3
Rodriguez, M., Posse, C., Zhang, E.: Multiple objective optimization in recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 11–18. Association for Computing Machinery, New York (Sep 2012). https://doi.org/10.1145/2365952.2365961, ISBN 978-1-4503-1270-7
Rothschild, M., Horiuchi, T., Maxey, M.: Evaluating “just right" in EdTech recommendation. In: KidRec ’19: Workshop in International and Interdisciplinary Perspectives on Children & Recommender and Information Retrieval Systems, Co-located with ACM IDC (2019). https://kidrec.github.io/papers/KidRec_2019_paper_6.pdf
Shrestha, A., Spezzano, F., Pera, M.S.: An empirical analysis of collaborative recommender systems robustness to shilling attacks. In: Proceedings of the Second Workshop on Online Misinformation- and Harm-Aware Recommender Systems Co-Located with RecSys 2021, CEUR-WS, vol. 3012, pp. 45–57. CEUR (Oct 2021). http://ceur-ws.org/Vol-3012/OHARS2021-paper4.pdf
Smith, J.J., Beattie, L., Cramer, H.: Scoping fairness objectives and identifying fairness metrics for recommender systems: The practitioners’ perspective. In: Proceedings of the ACM Web Conference 2023, pp. 3648–3659, Association for Computing Machinery, New York (Apr 2023). https://doi.org/10.1145/3543507.3583204, ISBN 978-1-4503-9416-1
Sofaer, S.: Qualitative methods: what are they and why use them? Health Serv. Res. 34(5 Pt 2), 1101–1118 (1999). https://pubmed.ncbi.nlm.nih.gov/10591275/, ISSN 0017-9124
Sonboli, N., Burke, R., Ekstrand, M., Mehrotra, R.: The multisided complexity of fairness in recommender systems. AI Mag. 43(2), 164–176 (2022). https://doi.org/10.1002/aaai.12054, ISSN 0738–4602
Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 154–162. Association for Computing Machinery (Sep 2018). https://doi.org/10.1145/3240323.3240372
Trust & Safety Professionals Association: Abuse types (Jun 2021). https://www.tspa.org/curriculum/ts-fundamentals/policy/abuse-types/
Tsiakas, K., Barakova, E., Khan, J.V., Markopoulos, P.: BrainHood: towards an explainable recommendation system for self-regulated cognitive training in children. In: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–6. Association for Computing Machinery, New York (Jun 2020). https://doi.org/10.1145/3389189.3398004
Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., Tsaparas, P.: Link recommendations for PageRank fairness. In: Proceedings of the ACM Web Conference 2022, pp. 3541–3551. Association for Computing Machinery, New York (Apr 2022). https://doi.org/10.1145/3485447.3512249, ISBN 978-1-4503-9096-5
Valentim, I., Lourenço, N., Antunes, N.: The impact of data preparation on the fairness of software systems. In: 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE), pp. 391–401 (Oct 2019). https://doi.org/10.1109/ISSRE.2019.00046, ISSN 2332–6549
van Alstyne, M., Brynjolfsson, E.: Global village or cyber-balkans? Modeling and measuring the integration of electronic communities. Manag. Sci. 51(6), 851–868 (2005). https://doi.org/10.1287/mnsc.1050.0363, ISSN 0025–1909
Vrijenhoek, S., Kaya, M., Metoui, N., Möller, J., Odijk, D., Helberger, N.: Recommenders with a mission: Assessing diversity in news recommendations. In: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, pp. 173–183. Association for Computing Machinery, New York (Mar 2021). https://doi.org/10.1145/3406522.3446019, ISBN 978-1-4503-8055-3
Wang, L., Joachims, T.: User fairness, item fairness, and diversity for rankings in two-sided markets. In: Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 23–41. Association for Computing Machinery, New York (Jul 2021). https://doi.org/10.1145/3471158.3472260
Wortman Vaughan, J.: Transparency and intelligibility throughout the machine learning life cycle (Jan 2020). https://www.microsoft.com/en-us/research/video/transparency-and-intelligibility-throughout-the-machine-learning-life-cycle/
Wu, H., Mitra, B., Ma, C., Diaz, F., Liu, X.: Joint multisided exposure fairness for recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 703–714. ACM (Jul 2022), https://doi.org/10.1145/3477495.3532007
Yang, Y., Zhang, C., Fan, C., Mostafavi, A., Hu, X.: Towards fairness-aware disaster informatics: An interdisciplinary perspective. IEEE Access 8, 201040–201054 (2020). https://doi.org/10.1109/ACCESS.2020.3035714, ISSN 2169–3536
Yao, S., Huang, B.: Beyond parity: Fairness objectives for collaborative filtering. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp. 2925–2934. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6885-beyond-parity-fairness-objectives-for-collaborative-filtering.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ekstrand, M.D., Beattie, L., Pera, M.S., Cramer, H. (2024). Not Just Algorithms: Strategically Addressing Consumer Impacts in Information Retrieval. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14611. Springer, Cham. https://doi.org/10.1007/978-3-031-56066-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-56066-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56065-1
Online ISBN: 978-3-031-56066-8
eBook Packages: Computer ScienceComputer Science (R0)