Skip to main content

KnowFIRES: A Knowledge-Graph Framework for Interpreting Retrieved Entities from Search

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14612))

Included in the following conference series:

  • 283 Accesses

Abstract

Entity retrieval is essential in information access domains where people search for specific entities, such as individuals, organizations, and places. While entity retrieval is an active research topic in Information Retrieval, it is necessary to explore the explainability and interpretability of them more extensively. KnowFIRES addresses this by offering a knowledge graph-based visual representation of entity retrieval results, focusing on contrasting different retrieval methods. KnowFIRES allows users to better understand these differences through the juxtaposition and superposition of retrieved sub-graphs. As part of our demo, we make KnowFIRES (Demo: http://knowfires.live, Source: https://github.com/kiarashgl/KnowFIRES) web interface and its source code publicly available (A demonstration of the tool: https://www.youtube.com/watch?v=9u-877ArNYE).

N. Arabzadeh, K. Golzadeh, and C. Risi—Equal Contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, A., Lyu, L., Idahl, M., Wang, Y., Wallat, J., Zhang, Z.: Explainable information retrieval: a survey. arXiv preprint arXiv:2211.02405 (2022)

  2. Arabzadeh, N., Mitra, B., Bagheri, E.: Ms marco chameleons: challenging the ms marco leaderboard with extremely obstinate queries. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 4426–4435 (2021)

    Google Scholar 

  3. Arabzadeh, N., Yan, X., Clarke, C.L.: Predicting efficiency/effectiveness trade-offs for dense vs. sparse retrieval strategy selection. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 2862–2866 (2021)

    Google Scholar 

  4. Balog, K.: Entity retrieval (2018)

    Google Scholar 

  5. Barsky, A., Munzner, T., Gardy, J., Kincaid, R.: Cerebral: visualizing multiple experimental conditions on a graph with biological context. IEEE Trans. Visual. Comput. Graph. 14(6), 1253–1260 (2008). https://doi.org/10.1109/TVCG.2008.117

  6. Cormack, G.V., Clarke, C.L., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 758–759 (2009)

    Google Scholar 

  7. De Cao, N., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. arXiv preprint arXiv:2010.00904 (2020)

  8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Fetahu, B., Gadiraju, U., Dietze, S.: Improving entity retrieval on structured data. In: Arenas, M., et al. (eds.) The Semantic Web - ISWC 2015, pp. 474–491. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_28

  10. Fujiwara, T., Zhao, J., Chen, F., Ma, K.L.: A visual analytics framework for contrastive network analysis. In: 2020 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 48–59. IEEE (2020). https://doi.org/10.1109/VAST50239.2020.00010

  11. Gerritse, E.J., Hasibi, F., de Vries, A.P.: Graph-embedding empowered entity retrieval. In: Jose, J.M., et al.: (eds.) Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, pp. 97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_7

  12. Gillick, D., et al.: Learning dense representations for entity retrieval. arXiv preprint arXiv:1909.10506 (2019)

  13. Gleicher, M.: Considerations for visualizing comparison. IEEE Trans. Visual Comput. Graphics 24(1), 413–423 (2017)

    Article  Google Scholar 

  14. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)

    Article  Google Scholar 

  15. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval, pp. 209–218 (2016)

    Google Scholar 

  16. Hasibi, F., et al.: Dbpedia-entity v2: a test collection for entity search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1265–1268 (2017)

    Google Scholar 

  17. Jafarzadeh, P., Amirmahani, Z., Ensan, F.: Learning to rank knowledge subgraph nodes for entity retrieval. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2519–2523 (2022)

    Google Scholar 

  18. Kang, H., Getoor, L., Shneiderman, B., Bilgic, M., Licamele, L.: Interactive entity resolution in relational data: a visual analytic tool and its evaluation. IEEE Trans. Visual Comput. Graph. 14(5), 999–1014 (2008). https://doi.org/10.1109/TVCG.2008.55

  19. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  20. Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over bert. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 39–48 (2020)

    Google Scholar 

  21. Lehmann, J., et al.: DBpedia – a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015). https://doi.org/10.3233/SW-140134

  22. Lin, J., Ma, X., Lin, S.C., Yang, J.H., Pradeep, R., Nogueira, R.: Pyserini: a python toolkit for reproducible information retrieval research with sparse and dense representations. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2356–2362 (2021)

    Google Scholar 

  23. Lin, X., Lam, W., Lai, K.P.: Entity retrieval in the knowledge graph with hierarchical entity type and content. In: Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 211–214 (2018)

    Google Scholar 

  24. Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 387–396 (2006)

    Google Scholar 

  25. McCabe, M.C., Chowdhury, A., Grossman, D.A., Frieder, O.: A unified environment for fusion of information retrieval approaches. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 330–334 (1999)

    Google Scholar 

  26. Nikolaev, F., Kotov, A.: Joint word and entity embeddings for entity retrieval from a knowledge graph. In: Jose, J.M., et al. (eds.) Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, pp. 141–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_10

  27. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 771–780 (2010)

    Google Scholar 

  28. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019)

  29. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: Bm25 and beyond. Found. Trends® Inf. Retriev. 3(4), 333–389 (2009)

    Google Scholar 

  30. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at trec-3. Nist Spec. Publ. SP 109, 109 (1995)

    Google Scholar 

  31. Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., Zaharia, M.: ColBERTv2: effective and efficient retrieval via lightweight late interaction. http://arxiv.org/abs/2112.01488

  32. Sciavolino, C., Zhong, Z., Lee, J., Chen, D.: Simple entity-centric questions challenge dense retrievers. arXiv preprint arXiv:2109.08535 (2021)

  33. Shehata, D., Arabzadeh, N., Clarke, C.L.A.: Early stage sparse retrieval with entity linking. arXiv:2208.04887 (2022)

  34. Shehata, D., Arabzadeh, N., Clarke, C.L.A.: Early stage sparse retrieval with entity linking (2022)

    Google Scholar 

  35. Singh, J., Anand, A.: EXS: Explainable search using local model agnostic interpretability. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 770–773 (2019)

    Google Scholar 

  36. Song, F., Croft, W.B.: A general language model for information retrieval. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 316–321 (1999)

    Google Scholar 

  37. Thakur, N., Reimers, N., Daxenberger, J., Gurevych, I.: Augmented sbert: data augmentation method for improving bi-encoders for pairwise sentence scoring tasks (2021)

    Google Scholar 

  38. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814 (2019)

  39. Zhao, J., Cao, N., Wen, Z., Song, Y., Lin, Y.R., Collins, C.: Fluxflow: visual analysis of anomalous information spreading on social media. IEEE Trans. Visual. Comput. Graph. 20(12), 1773–1782 (2014). https://doi.org/10.1109/TVCG.2014.2346922

  40. Zhao, J., Glueck, M., Breslav, S., Chevalier, F., Khan, A.: Annotation graphs: a graph-based visualization for meta-analysis of data based on user-authored annotations. IEEE Trans. Visual. Comput. Graph. 23(1), 261–270 (2017). https://doi.org/10.1109/TVCG.2016.2598543

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Arabzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arabzadeh, N., Golzadeh, K., Risi, C., Clarke, C.L.A., Zhao, J. (2024). KnowFIRES: A Knowledge-Graph Framework for Interpreting Retrieved Entities from Search. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14612. Springer, Cham. https://doi.org/10.1007/978-3-031-56069-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56069-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56068-2

  • Online ISBN: 978-3-031-56069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics