Abstract
The Result Assessment Tool (RAT) is a software toolkit for conducting research with results from commercial search engines and other information retrieval (IR) systems. The software integrates modules for study design and management, automatic collection of search results via web scraping, and evaluation of search results in an assessment interface using different question types. RAT can be used for conducting a wide range of studies, including retrieval effectiveness studies, classification studies, and content analyses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The SEO-classifier implementation is described at [16].
- 2.
We developed a script that generates search queries based on keyword suggestions generated by the Google Ads API: https://developers.google.com/google-ads/api/.
- 3.
Repository for the research data generated with RAT: https://osf.io/t3hg9/
- 4.
The RAT software demo is available at https://rat-software.org/
- 5.
Repository for the source code: https://github.com/rat-software/
References
Bar-Ilan, J., Levene, M.: A method to assess search engine results. Online Inf. Rev. 35, 854–868 (2011). https://doi.org/10.1108/14684521111193166
Tawileh, W., Griesbaum, J., Mandl, T.: Evaluation of five web search engines in Arabic language. In: Atzmüller, M., Benz, D., Hotho, A., and Stumme, G. (eds.) Proceedings of LWA 2010, Kassel, Germany, pp. 1–8 (2010)
Trielli, D., Diakopoulos, N.: Partisan search behavior and Google results in the 2018 U.S. midterm elections. Inf. Commun. Soc. 1–17 (2020). https://doi.org/10.1080/1369118X.2020.1764605
Lingnau, A., Ruthven, I., Landoni, M., van der Sluis, F.: Interactive search interfaces for young children - the PuppyIR approach. In: 2010 10th IEEE International Conference on Advanced Learning Technologies, pp. 389–390. IEEE (2010). https://doi.org/10.1109/ICALT.2010.111
Renaud, G., Azzopardi, L.: SCAMP. In: Proceedings of the 4th Information Interaction in Context Symposium on - IIIX 2012, pp. 286–289. ACM Press, New York (2012). https://doi.org/10.1145/2362724.2362776
Dussin, M., Ferro, N.: Design of a digital library system for large-scale evaluation campaigns. In: Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.) Research and Advanced Technology for Digital Libraries, pp. 400–401. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87599-4_45
Koopman, B.: Semantic search as inference. ACM SIGIR Forum. (2014). https://doi.org/10.1145/2701583.2701601
Ogilvie, P., Callan, J.P.: Experiments using the lemur toolkit. In: Proceedings of Tenth Text REtrieval Conference, TREC 2001, Gaithersburg, MD, USA, 13–16 November 2001 (2001)
Digitalmethods: DMI Tools. https://wiki.digitalmethods.net/Dmi/ToolDatabase. Accessed 23 Feb 2023
Thelwall, M.: Introduction to webometrics: quantitative web research for the social sciences. Synth. Lect. Inf. Concepts Retr. Serv. (2009). https://doi.org/10.2200/s00176ed1v01y200903icr004
Janssen, S., Käsmann, L., Fahlbusch, F.B., Rades, D., Vordermark, D.: Side effects of radiotherapy in breast cancer patients: the Internet as an information source. Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al 194, 136–142 (2018). https://doi.org/10.1007/s00066-017-1197-7
Rachul, C., Marcon, A.R., Collins, B., Caulfield, T.: COVID-19 and ‘immune boosting’ on the internet: a content analysis of Google search results. BMJ Open 10, e040989 (2020). https://doi.org/10.1136/bmjopen-2020-040989
Ballatore, A.: Google chemtrails: a methodology to analyze topic representation in search engine results. First Monday 20 (2015)
Lewandowski, D.: Evaluating the retrieval effectiveness of web search engines using a representative query sample. J. Assoc. Inf. Sci. Technol. 66, 1763–1775 (2015). https://doi.org/10.1002/asi.23304
Hinz, K., Sünkler, S., Lewandowski, D.: SEO im Wahlkampf. In: Korte, K.-R., Schiffers, M., von Schuckmann, A., Plümer, S. (eds.) Die Bundestagswahl 2021, pp. 1–28. Springer, Wiesbaden (2023). https://doi.org/10.1007/978-3-658-35758-0_19-1
Lewandowski, D., Sünkler, S., Yagci, N.: The influence of search engine optimization on Google’s results: a multi-dimensional approach for detecting SEO. In: 13th ACM Web Science Conference 2021, WebSci 2021, 21–25 June 2021 Virtual Event UK (2021). https://doi.org/10.1145/3447535.3462479
Haider, J., Ekström, B., Wallin, E.T., Lorentzen, D.G., Rödl, M., Söderberg, N.: Tracing online information about wind power in Sweden: an exploratory quantitative study of broader trends (2023). https://doi.org/10.13140/RG.2.2.27914.13766
Schultheiß, S., Lewandowski, D., Von Mach, S., Yagci, N.: Query sampler: generating query sets for analyzing search engines using keyword research tools. PeerJ Comput. Sci. 9, e1421 (2023). https://doi.org/10.7717/peerj-cs.1421
Yagci, N., Sünkler, S., Häußler, H., Lewandowski, D.: A comparison of source distribution and result overlap in web search engines. Proc. Assoc. Inf. Sci. Technol. 59, 346–357 (2022). https://doi.org/10.1002/pra2.758
Abras, C., Maloney-krichmar, D., Preece, J.: User-centered design. In: Bainbridge, W. (ed.) Encyclopedia of Human-Computer Interaction, pp. 445–456. Sage Publications, Thousand Oaks (2004)
International Organization for Standardization: ISO 9241-210 (2019). https://www.iso.org/standard/77520.html. Accessed 10 Oct 2023
Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data. 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18
Acknowledgments
This work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG); Grant No. 460676551).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sünkler, S., Yagci, N., Schultheiß, S., von Mach, S., Lewandowski, D. (2024). Result Assessment Tool: Software to Support Studies Based on Data from Search Engines. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14612. Springer, Cham. https://doi.org/10.1007/978-3-031-56069-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-56069-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56068-2
Online ISBN: 978-3-031-56069-9
eBook Packages: Computer ScienceComputer Science (R0)