Skip to main content

2nd International Workshop on Geographic Information Extraction from Texts (GeoExT 2024)

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

A wealth of unstructured textual content contains valuable geographic insights. This geographic information holds significance across diverse domains, including geographic information retrieval, disaster management, and spatial humanities. Despite significant progress in the extraction of geographic information from texts, numerous unresolved challenges persist, ranging from methodologies, systems, data, and applications to privacy concerns. This workshop will serve as a platform for the discourse of recent breakthroughs, novel ideas, and conceptual innovations in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, T., et al.: Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8(1), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arulanandam, R., Savarimuthu, B.T.R., Purvis, M.A.: Extracting crime information from online newspaper articles. In: Proceedings of the Second Australasian Web Conference, vol. 155, pp. 31–38 (2014)

    Google Scholar 

  3. Gritta, M., Pilehvar, M.T., Limsopatham, N., Collier, N.: What’s missing in geographical parsing? Lang. Resour. Eval. 52(2), 603–623 (2018)

    Article  Google Scholar 

  4. Haris, E., Gan, K.H.: Mining graphs from travel blogs: a review in the context of tour planning. Inform. Technol. Tourism 17(4), 429–453 (2017)

    Article  Google Scholar 

  5. Hu, X., Sun, Y., Kersten, J., Zhou, Z., Klan, F., Fan, H.: How can voting mechanisms improve the robustness and generalizability of toponym disambiguation? Int. J. Appl. Earth Obs. Geoinf. 117, 103191 (2023)

    Google Scholar 

  6. Hu, X., et al.: Location reference recognition from texts: A survey and comparison. arXiv preprint arXiv:2207.01683 (2022)

  7. Hu, Y., Adams, B.: Harvesting big geospatial data from natural language texts. In: Werner, M., Chiang, Y.-Y. (eds.) Handbook of Big Geospatial Data, pp. 487–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55462-0_19

    Chapter  Google Scholar 

  8. Hu, Y., et al.: Geo-knowledge-guided gpt models improve the extraction of location descriptions from disaster-related social media messages. Int. J. Geogr. Inf. Sci. 37(11), 2289–2318 (2023)

    Article  Google Scholar 

  9. Kinsella, S., Murdock, V., O’Hare, N.: " i’m eating a sandwich in glasgow" modeling locations with tweets. In: Proceedings of the 3rd International Workshop on Search and Mining User-generated Contents, pp. 61–68 (2011)

    Google Scholar 

  10. Melo, F., Martins, B.: Automated geocoding of textual documents: a survey of current approaches. Trans. GIS 21(1), 3–38 (2017)

    Article  Google Scholar 

  11. Milusheva, S., Marty, R., Bedoya, G., Williams, S., Resor, E., Legovini, A.: Applying machine learning and geolocation techniques to social media data (twitter) to develop a resource for urban planning. PLOS ONE 16(2), 1–12 (02 2021). https://doi.org/10.1371/journal.pone.0244317

  12. Purves, R.S., Clough, P., Jones, C.B., Hall, M.H., Murdock, V.: Geographic information retrieval: Progress and challenges in spatial search of text. Foundations and Trends® in Information Retrieval 12(2-3), 164–318 (2018). https://doi.org/10.1561/1500000034

  13. Scalia, G., Francalanci, C., Pernici, B.: Cime: context-aware geolocation of emergency-related posts. Geoinformatica 26(1), 125-157 (2022). https://doi.org/10.1007/s10707-021-00446-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuke Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Purves, R., Moncla, L., Kersten, J., Stock, K. (2024). 2nd International Workshop on Geographic Information Extraction from Texts (GeoExT 2024). In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14612. Springer, Cham. https://doi.org/10.1007/978-3-031-56069-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56069-9_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56068-2

  • Online ISBN: 978-3-031-56069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics