Abstract
Deploying methods that incorporate generated queries in their retrieval process, such as Doc2Query, has been shown to be effective for retrieving the most relevant documents for a user’s query. However, to the best of our knowledge, there has been no work yet on whether generated queries can also be used in the ranking process to achieve other objectives, such as ensuring a fair distribution of exposure in the ranking. Indeed, the amount of exposure that a document is likely to receive depends on the document’s position in the ranking, with lower-ranked documents having a lower probability of being examined by the user. While the utility to users remains the main objective of an Information Retrieval (IR) system, an unfair exposure allocation can lead to lost opportunities and unfair economic impacts for particular societal groups. Therefore, in this work, we conduct a first investigation into whether generating relevant queries can help to fairly distribute the exposure over groups of documents in a ranking. In our work, we build on the effective Doc2Query methods to selectively generate relevant queries for underrepresented groups of documents and use their predicted relevance to the original query in order to re-rank the underexposed documents. Our experiments on the TREC 2022 Fair Ranking Track collection show that using generated queries consistently leads to a fairer allocation of exposure compared to a standard ranking while still maintaining utility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amati, G., Ambrosi, E., Bianchi, M., Gaibisso, C., Gambosi, G.: FUB, IASI-CNR and university of “Tor Vergata” at TREC 2008 blog track (2008)
Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. (TOIS) 20(4), 357–389 (2002)
Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of attention: amortizing individual fairness in rankings. In: Proceedings of SIGIR, pp. 405–414 (2018)
Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as discriminators rather than generators. In: Proceedings of ICLR (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL (2019)
Ekstrand, M.D., Burke, R., Diaz, F.: Fairness and discrimination in retrieval and recommendation. In: Proceedings of SIGIR, pp. 1403–1404 (2019)
Ekstrand, M.D., McDonald, G., Raj, A., Johnson, I.: Overview of the TREC 2022 fair ranking track. In: Proceedings of TREC 2022 (2022)
Gospodinov, M., MacAvaney, S., Macdonald, C.: Doc2Query–: when less is more. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13981, pp. 414–422. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28238-6_31
Heuss, M., Sarvi, F., de Rijke, M.: Fairness of exposure in light of incomplete exposure estimation. In: Proceedings of SIGIR, pp. 759–769 (2022)
Jaenich, T., McDonald, G., Ounis, I.: ColBERT-FairPRF: towards fair pseudo-relevance feedback in dense retrieval. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13981, pp. 457–465. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28238-6_36
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)
Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst. (TOIS) 10(2), 115–141 (1992)
Lin, J., Ma, X., Mackenzie, J., Mallia, A.: On the separation of logical and physical ranking models for text retrieval applications. In: DESIRES, pp. 176–178 (2021)
MacAvaney, S., Nardini, F.M., Perego, R., Tonellotto, N., Goharian, N., Frieder, O.: Expansion via prediction of importance with contextualization. In: SIGIR, pp. 1573–1576 (2020)
Macdonald, C., Tonellotto, N.: Declarative experimentation in information retrieval using PyTerrier. In: Proceedings of ICTIR (2020)
McDonald, G., Macdonald, C., Ounis, I.: Search results diversification for effective fair ranking in academic search. Inf. Retrieval J. 25(1), 1–26 (2022)
Morik, M., Singh, A., Hong, J., Joachims, T.: Controlling fairness and bias in dynamic learning-to-rank. In: Proceedings of SIGIR, pp. 429–438 (2020)
Nogueira, R., Jiang, Z., Pradeep, R., Lin, J.: Document ranking with a pretrained sequence-to-sequence model. In: Proceedings of EMNLP 2020, pp. 708–718 (2020)
Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docTTTTTquery. Online preprint, vol. 6, 2 (2019)
Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)
Rekabsaz, N., Kopeinik, S., Schedl, M.: Societal biases in retrieved contents: measurement framework and adversarial mitigation of BERT rankers. In: Proceedings of SIGIR, pp. 306–316 (2021)
Rekabsaz, N., Schedl, M.: Do neural ranking models intensify gender bias? In: Proceedings of SIGIR, pp. 2065–2068 (2020)
Robertson, S.E.: The probability ranking principle in IR. J. Doc. 33(4), 294–304 (1977). https://doi.org/10.1108/eb026647
Robertson, S.E., et al.: Okapi at TREC-3. NIST Special Publication Sp, vol. 109 (1995)
Rocchio, Jr., J, J.: Relevance feedback in information retrieval. The SMART retrieval system: experiments in automatic document processing (1971)
Sarvi, F., Heuss, M., Aliannejadi, M., Schelter, S., de Rijke, M.: Understanding and mitigating the effect of outliers in fair ranking. In: Proceedings of WSDM, pp. 861–869 (2022)
Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of KDD (2018)
Usunier, N., Do, V., Dohmatob, E.: Fast online ranking with fairness of exposure. In: Proceedings of FACCT, pp. 2157–2167 (2022)
Wang, X., Macdonald, C., Tonellotto, N., Ounis, I.: ColBERT-PRF: semantic pseudo-relevance feedback for dense passage and document retrieval. ACM Trans. Web 17(1), 1–39 (2023)
Zehlike, M., Castillo, C.: Reducing disparate exposure in ranking: a learning to rank approach. In: Proceedings of the Web Conference 2020, pp. 2849–2855 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jaenich, T., McDonald, G., Ounis, I. (2024). Improving Exposure Allocation in Rankings by Query Generation. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14612. Springer, Cham. https://doi.org/10.1007/978-3-031-56069-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-56069-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56068-2
Online ISBN: 978-3-031-56069-9
eBook Packages: Computer ScienceComputer Science (R0)