Abstract
A number of supersingular isogeny based cryptographic protocols require the endomorphism ring of the initial elliptic curve to be either unknown or random in order to be secure. To instantiate these protocols, Basso et al. recently proposed a secure multiparty protocol that generates supersingular elliptic curves defined over \(\mathbb {F}_{p^2}\) of unknown endomorphism ring as long as at least one party acts honestly. However, there are many protocols that specifically require curves defined over \(\mathbb {F}_p\), for which the Basso et al. protocol cannot be used. Also, the simple solution of using a signature scheme such as CSI-FiSh or SeaSign for proof of knowledge either requires extensive precomputation of large ideal class groups or is too slow for everyday applications.
In this paper, we present CSIDH-SCG, a new multiparty protocol that generates curves of unknown endomorphism ring defined over \(\mathbb {F}_p\). This protocol relies on CSIDH-ROIP, a new CSIDH based proof of knowledge. We also present CSIDH-CR, a multiparty algorithm that be used in conjunction with CSIDH-SCG to generate a random curve over \(\mathbb {F}_p\) while still keeping the endomorphism ring unknown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: Practical robust DKG protocols for CSIDH. In: Tibouchi, M., Wang, X. (eds.) ACNS 2023. LNCS, vol. 13906, pp. 219–247. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33491-7_9
Basso, A., et al.: Supersingular curves you can trust. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14005, pp. 405–437. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_14
Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: distributed key generation for CSIDH. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021. LNCS, vol. 12841, pp. 257–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_14
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_11
Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36
De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26
De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_10
Feo, L.D., et al.: SCALLOP: scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. LNCS, vol. 13940, pp. 345–375. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_13
Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504 (2009). https://doi.org/10.1016/j.jnt.2008.11.006
Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_8
Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026 (2022)
Moriya, T., Takashima, K., Takagi, T.: Group key exchange from CSIDH and its application to trusted setup in supersingular isogeny cryptosystems. In: Liu, Z., Yung, M. (eds.) Inscrypt 2019. LNCS, vol. 12020, pp. 86–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42921-8_5
Panny, L.: CSI-FiSh really isn’t polynomial-time. https://yx7.cc/blah/2023-04-14.html
Petit, C.: Faster algorithms for isogeny problems using torsion point images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12
Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17
Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems are equivalent. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1100–1111 (2021)
Wesolowski, B.: Orientations and the supersingular endomorphism ring problem. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 345–371. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_13
Wu, J., Stinson, D.R.: An efficient identification protocol and the knowledge-of-exponent assumption. Cryptology ePrint Archive, Paper 2007/479 (2007). https://eprint.iacr.org/2007/479
Acknowledgments
We would like to thank Andrea Basso for helpful comments on a draft version of this paper. This research was supported by NSERC Alliance Consortia Quantum Grant ALLRP 578463–2022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mokrani, Y., Jao, D. (2024). Generating Supersingular Elliptic Curves over \(\mathbb {F}_p\) with Unknown Endomorphism Ring. In: Chattopadhyay, A., Bhasin, S., Picek, S., Rebeiro, C. (eds) Progress in Cryptology – INDOCRYPT 2023. INDOCRYPT 2023. Lecture Notes in Computer Science, vol 14459. Springer, Cham. https://doi.org/10.1007/978-3-031-56232-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-56232-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56231-0
Online ISBN: 978-3-031-56232-7
eBook Packages: Computer ScienceComputer Science (R0)