Abstract
Internet-of-Things(IoT)-based edge computing in smart factories, smart grid, agriculture, constructions and autonomous vehicles include service-oriented gateways that connect with the cloud, perform machine-to-machine communication, often transmiting large amount data up and down the network, performing time-sensitive processing and involving intelligent local decision-making. In view of a sharp increase in cyberattacks today targeting edge computing, these gateways need to provide digital signing and key negotiation for ensuring reliable data sources, trusted applications and authentic devices and connections. In contrast to common perception, we show that post-quantum cryptography methods do not necessitate extensive modification to adopt in such environments; further, the cryptography algorithm’s hardness is preserved while fulfilling the IoT device’s resource limitations. In particular, we demonstrate an efficient method and an implementation on a 32-bit ARMCortex-M4, 64KB memory microcontroller, based on post-quantum key encapsulation mechanisms (KEMs), for secure communication and authentication in an industrial IoT environment.
This work was supported in part by the European Union (EU) Horizon 2020 Project FLUIDOS (Flexible, scaLable, secUre, and decentralIseD Operating System) under GA No. 101070473.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., et al.: Classic mceliece, merger of classic mceliece and nts-kem, May 2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
Alkim, E., et al.: Frodokem learning with errors key encapsulation. NIST, Gaithersburg, MD, USA, Technical report (2021). https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.R., Tsudik, G.: Assured: architecture for secure software update of realistic embedded devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2290–2300 (2018). https://doi.org/10.1109/TCAD.2018.2858422
Barton., J., Buchanan., W., Pitropakis., N., Sayeed., S., Abramson., W.: Post quantum cryptography analysis of TLS tunneling on a constrained device. In: Proceedings of the 8th International Conference on Information Systems Security and Privacy - ICISSP, pp. 551–561. INSTICC, SciTePress (2022).https://doi.org/10.5220/0010903000003120
Bos, J., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1006–1018. CCS ’16 (2016). https://doi.org/10.1145/2976749.2978425
Chen, C., et al.: NTRU (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing it: UI state inference and novel android attacks. In: 23rd USENIX Security Symposium (USENIX Security 14), pp. 1037–1052. USENIX Association, San Diego, CA, August 2014. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/chen
Community, U.: Uptane standard for design and implementation v1.2.0. https://uptane.github.io/papers/uptane-standard.1.2.0.html
Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key exchange and authentication in tls and ssh. Cryptology ePrint Archive, Paper 2019/858 (2019). https://eprint.iacr.org/2019/858
D’Anvers, J.P., et al.: Saber (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
Dhobi, R., Gajjar, S., Parmar, D., Vaghela, T.: Secure firmware update over the air using trustzone. In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), vol. 1, pp. 1–4 (2019).https://doi.org/10.1109/i-PACT44901.2019.8959992
Fernández-Caramés, T.M.: From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the internet of things. IEEE Internet Things J. 7(7), 6457–6480 (2020). https://doi.org/10.1109/JIOT.2019.2958788
Hopkins, K., Bergquist, J., Ortner, B., Kröger, M., Wong, S.: Edge security challenges. Kubernetes IoT Edge Working Group, Whitepaper (2019). https://github.com/kubernetes/community/tree/master/wg-iot-edge/whitepapers/edge-security-challenges
Kornaros, G.: Hardware-assisted machine learning in resource-constrained IoT environments for security: review and future prospective. IEEE Access 10, 58603–58622 (2022). https://doi.org/10.1109/ACCESS.2022.3179047
Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: RLizard: post-quantum key encapsulation mechanism for IoT devices. IEEE Access 7, 2080–2091 (2019). https://doi.org/10.1109/ACCESS.2018.2884084
Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: Efficient software implementation of Ring-LWE encryption on IoT processors. IEEE Trans. Comput. 69(10), 1424–1433 (2020). https://doi.org/10.1109/TC.2017.2750146
Mbakoyiannis, D., Tomoutzoglou, O., Kornaros, G.: Secure over-the-air firmware updating for automotive electronic control units. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 174–181. SAC ’19 (2019). https://doi.org/10.1145/3297280.3297299
Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D., Yarom, Y.: The 9 lives of bleichenbacher’s cat: new cache attacks on TLS implementations. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 435–452 (2019).https://doi.org/10.1109/SP.2019.00062
Sajid, A., Abbas, H., Saleem, K.: Cloud-assisted IoT-based SCADA systems security: a review of the state of the art and future challenges. IEEE Access 4, 1375–1384 (2016). https://doi.org/10.1109/ACCESS.2016.2549047
Schwabe, P., et al.: Crystals-kyber (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
Sepúlveda, J., Gross, M., Zankl, A., Sigl, G.: Beyond cache attacks: exploiting the bus-based communication structure for powerful on-chip microarchitectural attacks. ACM Trans. Embed. Comput. Syst. 20(2) (2021). https://doi.org/10.1145/3433653
Yunakovsky, S.E., et al.: Towards security recommendations for public-key infrastructures for production environments in the post-quantum era. EPJ Quantum Technol. 8(1) (2021).https://doi.org/10.1140/epjqt/s40507-021-00104-z
Zhang, X., Xiao, Y., Zhang, Y.: Return-oriented flush-reload side channels on arm and their implications for android devices. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 858–870. CCS ’16 (2016). https://doi.org/10.1145/2976749.2978360
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Kornaros, G., Berki, G., Grammatikakis, M. (2024). Quantum-Secure Communication for Trusted Edge Computing with IoT Devices. In: Meyer, N., Grocholewska-Czuryło, A. (eds) ICT Systems Security and Privacy Protection. SEC 2023. IFIP Advances in Information and Communication Technology, vol 679. Springer, Cham. https://doi.org/10.1007/978-3-031-56326-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-56326-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56325-6
Online ISBN: 978-3-031-56326-3
eBook Packages: Computer ScienceComputer Science (R0)