Abstract
Digital twins play an essential role in manufacturing companies to adopt Industry 4.0. However, their uptake has been lagging, especially in European manufacturing firms. This can be attributed to the absence of automated methods for digitizing physical manufacturing resources and creating digital representations accessible and processable by both humans and computers. Our research addresses this challenge by automating the digitization of manufacturing resources captured on the shop floor. We employ object detection techniques on a set of images and align the results with an ontology that standardizes the semantic description of digital representations. This research aims to accelerate digital transformation for manufacturing companies, providing digital representations to their physical resources. The ontology-based digital representation fosters interoperability among diverse equipment and machines from various vendors. It enables the automated deployment of digital twins, improving the efficiency of planning and control of manufacturing systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Falah, M.F., Sukaridhoto, S., Al Rasyid, M.U.H., Wicaksono, H.: Design of virtual engineering and digital twin platform as implementation of cyber-physical systems. Procedia Manuf. 52, 331–336 (2020)
Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. Ifac-PapersOnline 51(11), 1016–1022 (2018)
Moder, P., Ehm, H., Jofer, E.: A holistic digital twin based on semantic web technologies to accelerate digitalization. In: Keil, S., Lasch, R., Lindner, F., Lohmer, J. (eds.) EADTC 2018-2019. LNEE, vol. 670, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48602-0_1
Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A.: Mason: a proposal for an ontology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), pp. 195–200 (2006)
Wicaksono, H., Jost, F., Rogalski, S., Ovtcharova, J.: Energy efficiency evaluation in manufacturing through an ontology-represented knowledge base. Intell. Syst. Account. Financ. Manag. 21(1), 59–69 (2014)
Wicaksono, H.: An integrated method for information and communication technology (ICT) supported energy efficiency evaluation and optimization in manufacturing: knowledge-based approach and energy performance indicators (EnPI) to support evaluation and optimization of energy efficiency. PhD thesis, Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2016 (2016)
de Roode, M., Fernández-Izquierdo, A., Daniele, L., Poveda-Villalón, M., García-Castro, R.: SAREF4INMA: a SAREF extension for the industry and manufacturing domain. Semant. Web 11(6), 911–926 (2020)
Liu, S., Bao, J., Zheng, P.: A review of digital twin-driven machining: from digitization to intellectualization. J. Manuf. Syst. 67, 361–378 (2023)
Alam, M.D., Kabir, G., Mirmohammadsadeghi, S.: A digital twin framework development for apparel manufacturing industry. Decis. Anal. J. 7, 100252 (2023)
Zhou, X., et al.: Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems. IEEE Trans. Ind. Inform. 18(2), 1377–1386 (2021)
Sommer, M., Stjepandić, J., Stobrawa, S., von Soden, M.: Automated generation of digital twin for a built environment using scan and object detection as input for production planning. J. Ind. Inf. Integr. 33, 100462 (2023)
Denkena, B., Dittrich, M.A., Stobrawa, S., Stjepandic, J.: Automated generation of a digital twin using scan and object detection for data acquisition. Simulation in Produktion und Logistik, pp. 49–60 (2019)
Erkoyuncu, J.A., del Amo, I.F., Ariansyah, D., Bulka, D., Roy, R., et al.: A design framework for adaptive digital twins. CIRP Ann. 69(1), 145–148 (2020)
Xia, K., Saidy, C., Kirkpatrick, M., Anumbe, N., Sheth, A., Harik, R.: Towards semantic integration of machine vision systems to aid manufacturing event understanding. Sensors 21(13), 4276 (2021)
Rozanec, J.M., et al.: Towards actionable cognitive digital twins for manufacturing. SeDiT@ ESWC 2615, pp. 1–12 (2020)
Meyer, M., Yu, Z., Gulati, P., Delforouzi, A., Roggenbuck, J., Wolf, K.: Ontologies for digital twins in smart manufacturing whitepaper
Psarommatis, F., Fraile, F., Ameri, F.: Zero defect manufacturing ontology: a preliminary version based on standardized terms. Comput. Ind. 145, 103832 (2023)
yolov5
Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zhavoronkov, Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin, Artyom Zankevich, DmitriySidnev, Maksim Markelov, Johannes222, Mathis Chenuet, a andre, telenachos, Aleksandr Melnikov, Jijoong Kim, Liron Ilouz, Nikita Glazov, Priya4607, Rush Tehrani, Seungwon Jeong, Vladimir Skubriev, Sebastian Yonekura, vugia truong, zliang7, lizhming, and Tritin Truong. opencv/cvat: v1.1.0, August 2020
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2) (2020)
Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN, Liu Changyu, Laughing, tkianai, Adam Hogan, lorenzomammana, yxNONG, AlexWang1900, Laurentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Francisco Ingham, Frederik, Guilhen, Hatovix, Jake Poznanski, Jiacong Fang, Lijun Yu
, changyu98, Mingyu Wang, Naman Gupta, Osama Akhtar, PetrDvoracek, and Prashant Rai. ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements, October 2020
Fawcett, T.: An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)
Martin, P., d’Acunto, A.: Design of a production system: an application of integration product-process. Int. J. Comput. Integr. Manuf. 16, 509–516 (2003)
Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)
Nikita Sachdeva. Insights & blogs around software engineering - learn, develop, grow, 2023. https://insights.daffodilsw.com/blog/the-future-of-digital-twins
Liu, J., Yu, D., Bi, X., Hu, Y., Yu, H., Li, B.: The research of ontology-based digital twin machine tool modeling. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 2130–2134. IEEE (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Supyen, K., Mathur, A., Boroukhian, T., Wicaksono, H. (2024). Streamlining Manufacturing Resource Digitization for Digital Twins Through Ontologies and Object Detection Techniques. In: Freitag, M., Kinra, A., Kotzab, H., Megow, N. (eds) Dynamics in Logistics. LDIC 2024. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-56826-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-56826-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56825-1
Online ISBN: 978-3-031-56826-8
eBook Packages: EngineeringEngineering (R0)