Skip to main content

Finding Sets of Solutions for Temporal Uncertain Problems

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

The multi-objective pathfinding problem is a complex and NP-hard problem with numerous industrial applications. However, the number of non-dominated solutions can often exceed human comprehension capacity. This paper introduces a novel methodology that leverages the concept of a Pareto graph to address this challenge. Unlike previous approaches, our method constructs a graph that relates paths where there is potential for change between them and applies a graph community algorithm to identify solution subsets based on specific aspects defined by a decision-maker. We describe the construction of a Route Change Graph (RCG) to represent possible route changes. A matrix is constructed to save the number of possible change opportunities between two routes, which is then used to construct the RCG. We propose using a threshold value for edge weights in the graph construction, balancing between minimising the number of edges and maintaining connectivity. Following the construction of the RCG, we apply a community detection algorithm to identify closely related solutions, using Leiden algorithm due to its efficiency and refinement phase. We propose calculating various metrics on these communities, including Density, Average Cluster Coefficient, Group Betweenness Centrality, and Graph Degree Centrality, to provide insights into the network structure and interconnectivity. This methodology offers a more manageable set of solutions for decision-makers, enhancing their ability to make informed decisions in complex multi-objective pathfinding problems.

This work is funded by the German Federal Ministry of Education and Research through the 6G-ANNA project (grant no. 16KISK092).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 3, issue 1, pp. 361–362 (2009)

    Google Scholar 

  2. Bejarano, L.A., Espitia, H.E., Montenegro, C.E.: Clustering analysis for the pareto optimal front in multi-objective optimization. Computation 10(3), 37 (2022). Publisher: Multidisciplinary Digital Publishing Institute

    Google Scholar 

  3. Bollobás, B.: Graph Theory, vol. 63. Springer, New York, New York, NY (1979), series Title: Graduate Texts in Mathematics. https://doi.org/10.1007/978-1-4612-9967-7

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. Eur. J. Oper. Res. 97(1), 159–166 (1997)

    Article  Google Scholar 

  6. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23(3), 181–201 (1999)

    Article  Google Scholar 

  7. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  8. Kahagalage, S., Turan, H.H., Jalalvand, F., El Sawah, S.: A novel graph-theoretical clustering approach to find a reduced set with extreme solutions of Pareto optimal solutions for multi-objective optimization problems. J. Global Optim. 86(2), 467–494 (2023)

    Article  MathSciNet  Google Scholar 

  9. Korhonen, P., Wallenius, J.: A pareto race. Naval Res. Logist. (NRL) 35(6), 615–623 (1988)

    Article  Google Scholar 

  10. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature - PPSN XV. LNCS, pp. 232–244. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  11. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)

    Article  Google Scholar 

  12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004), publisher: American Physical Society

    Google Scholar 

  13. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: an experimental analysis. In: Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.) Multiobjective Programming and Goal Programming. LNEMS, pp. 69–77. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Pulido, F.J.J., Mandow, L., Pérez-De-La-Cruz, J.L.L.: Dimensionality reduction in multi objective shortest path search. Comput. Oper. Res. 64, 60–70 (2015)

    Article  MathSciNet  Google Scholar 

  15. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)

    Article  MathSciNet  Google Scholar 

  16. Rouder, J.N., Morey, R.D., Cowan, N., Zwilling, C.E., Morey, C.C., Pratte, M.S.: An assessment of fixed-capacity models of visual working memory. Proc. Natl. Acad. Sci. 105(16), 5975–5979 (2008)

    Article  Google Scholar 

  17. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. J. Graph Algorithms Appl. 9(2), 265–275 (2005)

    Article  MathSciNet  Google Scholar 

  18. Traag, V.A., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 5233 (2019). Publisher: Nature Publishing Group

    Google Scholar 

  19. Traag, V., et al.: vtraag/leidenalg: 0.10.0 (2023)

    Google Scholar 

  20. Weise, J.: Evolutionary many-objective optimisation for pathfinding problems. Doctoral Thesis, Otto von Guericke University Magdeburg, Magdeburg (2023). Accepted: 2023–03-14T10:25:49Z. ISBN: 9781839107955

    Google Scholar 

  21. Weise, J.: Pareto graph analysis (2023). https://doi.org/10.5281/zenodo.10044244

  22. Weise, J., Mostaghim, S.: Dataset (Pareto fronts and sets) for the Multi-objective pathfinding problem (2023). https://doi.org/10.5281/ZENODO.10008219

  23. Wilson, R.J.: Introduction to Graph Theory. Longman (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Weise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weise, J., Mostaghim, S. (2024). Finding Sets of Solutions for Temporal Uncertain Problems. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics