Skip to main content

On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

The complexity of Multi-Objective (MO) continuous optimisation problems arises from a combination of different characteristics, such as the level of multi-modality. Earlier studies revealed that there is a conflict between solver convergence in objective space and solution set diversity in the decision space, which is especially important in the multi-modal setting. We build on top of this observation and investigate this trade-off in a multi-objective manner by using multi-objective automated algorithm configuration (MO-AAC) on evolutionary multi-objective algorithms (EMOA). Our results show that MO-AAC is able to find configurations that outperform the default configuration as well as configurations found by single-objective AAC in regards to objective space convergence and diversity in decision space, leading to new recommendations for high-performing default settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Source code: https://github.com/jeroenrook/SMAC3/tree/mosmac-anon.

  2. 2.

    Experimental code can be found at https://github.com/jeroenrook/MMMOO-moconfig-exp.

References

  1. Afsar, B., Fieldsend, J.E., Guerreiro, A.P., Miettinen, K., Rojas Gonzalez, S., Sato, H.: Many-Objective Quality Measures. In: Brockhoff, D., Emmerich, M., Naujoks, B., Purshouse, R. (eds.) Many-Criteria Optimization and Decision Analysis. Natural Computing Series, pp. 113–148. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25263-1_5

  2. Audet, C., et al.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). issn: 0377–2217. https://doi.org/10.1016/j.ejor.2020.11.016

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007). issn: 03772217. https://doi.org/10.1016/j.ejor.2006.08.008

  4. Blot, A., Hoos, H.H., Jourdan, L., Kessaci-Marmion, M.É., Trautmann, H.: MO-ParamILS: a multi-objective automatic algorithm configuration framework. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 32–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_3

    Chapter  Google Scholar 

  5. Brockhoff, D., et al.: Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites (2016). https://doi.org/10.48550/ARXIV.1604.00359

  6. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 695–1724 (2013). issn: 0160–5682, 1476–9360. https://doi.org/10.1057/jors.2013.71

  7. Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for solving multi-objective problems. 2nd ed. Genetic and Evolutionary Computation Series. Springer, New York (2007). isbn: 978-0-387-36797-2

    Google Scholar 

  8. Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_4

    Chapter  Google Scholar 

  9. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). issn: 1089778X. https://doi.org/10.1109/4235.996017

  10. Deb, K., et al.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). isbn: 978-1-85233-787-2. https://doi.org/10.1007/1-84628-137-7_6

  11. Grimme, C., Kerschke, P., Trautmann, H.: Multimodality in multi-objective optimization – more boon than bane? In: Deb, K., Goodman, E., Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P. (eds.) EMO 2019. LNCS, vol. 11411, pp. 126–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_11

    Chapter  Google Scholar 

  12. Grimme, C., et al.: Peeking beyond peaks: challenges and research potentials of continuous multimodal multi-objective optimization. In: Computers and Operations Research 136, 105489 (2021). issn: 03050548. https://doi.org/10.1016/j.cor.2021.105489

  13. Heins, J., et al.: BBE: basin-based evaluation of multimodal multiobjective optimization problems. In: Parallel Problem Solving from Nature - PPSN XVII, vol. 13398. Cham: Springer (2022), pp. 192–206. isbn: 978-3-031-14714-2. https://doi.org/10.1007/978-3-031-14714-2_14

  14. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_3

    Chapter  Google Scholar 

  15. Hutter, F., et al.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009). issn: 1076–9757. https://doi.org/10.1613/jair.2861

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  17. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyperparameter optimization. JMLR 23(54), 1–9 (2022). http://jmlr.org/papers/v23/21-0888.html

  18. López-Ibáñez, M., et al.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspectives 3, 43–58 (2016). issn: 22147160. https://doi.org/10.1016/j.orp.2016.09.002

  19. Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. thesis. Princeton University (1963)

    Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), pp. 712–731 (2007). issn: 1941–0026, 1089–778X. https://doi.org/10.1109/TEVC.2007.892759

  21. Rook, J., et al.: MO-SMAC: multi-objective sequential model-based algorithm configuration. In: Manuscript Under Review, pp. 1–8 (2024)

    Google Scholar 

  22. Rook, J., et al.: On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 356–359. ACM, Boston, July 2022. isbn: 978-1-4503-9268-6. https://doi.org/10.1145/3520304.3528998

  23. Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through multimodal multi-objective landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference. Boston Massachusetts: ACM, July 2022, pp. 592–600. isbn: 978-1-4503-9237-2. https://doi.org/10.1145/3512290.3528793

  24. Schäpermeier, L., et al.: Peak-a-boo! generating multi-objective multiple peaks benchmark problems with precise pareto sets. In: Evolutionary Multi-Criterion Optimization, vol. 13970, pp. 291–304. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27250-9. isbn:978-3-031-27250-9_21

  25. Schede, E., et al.: A survey of methods for automated algorithm configuration. J. Artif. Intell. Res. 75, 425–487 (2022). issn: 1076–9757. https://doi.org/10.1613/jair.1.13676

  26. Solow, A.R., Polasky, S.: Measuring biological diversity. In: Environ. Ecol. Stat. 1(2), 95–103 (1994). issn: 1352–8505, 1573–3009. https://doi.org/10.1007/BF02426650

  27. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. Dublin Ireland: ACM, July 2011, pp. 641–648. isbn: 978-1-4503-0557-0. https://doi.org/10.1145/2001576.2001665

  28. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient ascent multi-objective optimization. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (eds.) EMO 2017. LNCS, vol. 10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_44

    Chapter  Google Scholar 

  29. Yue, C., et al.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019). issn: 22106502. https://doi.org/10.1016/j.swevo.2019.03.011

  30. Zitzler, E., et al.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). issn: 1089–778X. https://doi.org/10.1109/TEVC.2003.810758

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ludger Preuß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preuß, O.L., Rook, J., Trautmann, H. (2024). On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics