Skip to main content

Measuring Similarities in Model Structure of Metaheuristic Rule Set Learners

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

We present a way to measure similarity between sets of rules for regression tasks. This was identified to be an important but missing tool to investigate Metaheuristic Rule Set Learners (MRSLs), a class of algorithms that utilize metaheuristics such as Genetic Algorithms to solve learning tasks: The commonly-used predictive performance-based metrics such as mean absolute error do not capture most users’ actual preferences when they choose these kinds of models since they typically aim for model interpretability (i. e. low number of rules, meaningful rule placement etc.) and not low error alone. Our similarity measure is based on a form of metaheuristic-agnostic edit distance. It is meant to be used—in conjunction with a certain class of benchmark problems—for analysing and improving an as-of-yet underresearched part of MRSL algorithms: The metaheuristic that optimizes the model’s structure (i. e. the set of rule conditions). We discuss the measure’s most important properties and demonstrate its applicability by performing experiments on the best-known MRSL, XCSF, comparing it with two non-metaheuristic Rule Set Learners, Decision Trees and Random Forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A rule k’s training match set is the set of training data points that \(m(\psi _{k}; \cdot )\) is fulfilled for, i. e. \(\{x \in X \mid m(\psi _{k}; x) = 1\}\).

  2. 2.

    We slightly abuse notation here and overload the matching function m to be able to pass the training data input \(N\times \mathcal {D}_\mathcal {X}\) matrix X consisting of N vectors \(x_{n} \in \mathcal {X}\) to a single condition \(m(\psi ; \cdot )\) to get an N-vector, i. e. \(m(\psi ; X) = \left( m(\psi ; x_{n})\right) _{n=1}^{N} \in \{0, 1\}^{N}\).

  3. 3.

    For \(N=768\) training data points, our own (not at all optimized) code took around 0.0005 s per computation of \(\delta _{X}\) (mean over all computations of \(d_{X}\) with \(N=768\) performed for Fig. 2) and correspondingly around 0.2 s for computing \(d_{X}\) for two model structures of size 20. For \(N=2000\), we measured 0.002 s per \(\delta _{X}\) computation (and correspondingly 0.8 s for size 20 model structures).

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  2. Alcala, R., Gacto, M.J., Herrera, F.: A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems. IEEE Trans. Fuzzy Syst. 19(4), 666–681 (2011). https://doi.org/10.1109/TFUZZ.2011.2131657

    Article  Google Scholar 

  3. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolut. Comput. 11(3), 209–238 (2003). https://doi.org/10.1162/106365603322365289

    Article  Google Scholar 

  4. Brusco, M., Cradit, J.D., Steinley, D.: A comparison of 71 binary similarity coefficients: the effect of base rates. Plos One 16(4) (2021)

    Google Scholar 

  5. Butz, M.V., Stolzmann, W.: An algorithmic description of ACS2. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 211–229. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4_13

    Chapter  Google Scholar 

  6. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Syst. Cybernet. Inform. 8(1), 43–48 (2010)

    Google Scholar 

  7. Cordón, O.: A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate Reasoning 52(6), 894–913 (2011). https://doi.org/10.1016/j.ijar.2011.03.004

    Article  Google Scholar 

  8. Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Review and study of genotypic diversity measures for real-coded representations. IEEE Trans. Evol. Comput. 16(5), 695–710 (2012). https://doi.org/10.1109/TEVC.2011.2170075

    Article  Google Scholar 

  9. Drugowitsch, J.: Design and Analysis of Learning Classifier Systems - A Probabilistic Approach. SCI, vol. 139. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-79866-8

  10. Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Informatica 34(2), 109–133 (1997). https://doi.org/10.1007/S002360050075

    Article  MathSciNet  Google Scholar 

  11. Ganti, V., Gehrke, J., Ramakrishnan, R.: A framework for measuring changes in data characteristics. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 1999 pp. 126–137. Association for Computing Machinery, New York (1999). https://doi.org/10.1145/303976.303989

  12. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/S10044-008-0141-Y

    Article  MathSciNet  Google Scholar 

  13. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic programming. IEEE Trans. Evol. Comput. 12(4), 506–524 (2008). https://doi.org/10.1109/TEVC.2008.915993

    Article  Google Scholar 

  14. Heider, M., Pätzel, D., Stegherr, H., Hähner, J.: A Metaheuristic Perspective on Learning Classifier Systems, pp. 73–98. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-3888-7_3

  15. Heider, M., Stegherr, H., Nordsieck, R., Hähner, J.: Learning classifier systems for self-explaining socio-technical-systems (2022)

    Google Scholar 

  16. Heider, M., et al.: Discovering rules for rule-based machine learning with the help of novelty search. SN Comput. Sci. 4(6), 778 (2023). https://doi.org/10.1007/s42979-023-02198-x

    Article  Google Scholar 

  17. Heider, M., Stegherr, H., Wurth, J., Sraj, R., Hähner, J.: Separating rule discovery and global solution composition in a learning classifier system. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2022, pp. 248–251. Association for Computing Machinery, New York(2022). https://doi.org/10.1145/3520304.3529014

  18. Kharbat, F., Odeh, M., Bull, L.: New approach for extracting knowledge from the XCS learning classifier system. Inter. J. Hybrid Intell. Syst. 4, 49–62 (2007). https://doi.org/10.3233/HIS-2007-4201

  19. Kovacs, T.: Deletion schemes for classifier systems. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, pp. 329–336 (1999)

    Google Scholar 

  20. Kovacs, T.: What should a classifier system learn and how should we measure it? Soft. Comput. 6(3), 171–182 (2002)

    Article  Google Scholar 

  21. Kovacs, T., Kerber, M.: High classification accuracy does not imply effective genetic search. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 785–796. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_93

    Chapter  Google Scholar 

  22. Liu, B., Hsu, W., Han, H.-S., Xia, Y.: Mining changes for real-life applications. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 337–346. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44466-1_34

    Chapter  Google Scholar 

  23. Liu, B., Hsu, W., Ma, Y.: Discovering the set of fundamental rule changes. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 335–340. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/502512.502561

  24. Liu, B., Ma, Y., Lee, R.: Analyzing the interestingness of association rules from the temporal dimension. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 377–384 (2001). https://doi.org/10.1109/ICDM.2001.989542

  25. Liu, Y., Browne, W.N., Xue, B.: A comparison of learning classifier systems’ rule compaction algorithms for knowledge visualization. ACM Trans. Evol. Learn. Optim. 1(3) (2021). https://doi.org/10.1145/3468166

  26. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: An ant colony algorithm for classification rule discovery. In: Data Mining, pp. 191–208. IGI Global (2002). https://doi.org/10.4018/978-1-930708-25-9.ch010

  27. Pätzel, D., Heider, M., Hähner, J.: Towards principled synthetic benchmarks for explainable rule set learning algorithms. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO 2023 Companion, pp. 1657–1662. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3583133.3596416

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  29. Pekerskaya, I., Pei, J., Wang, K.: Mining changing regions from access-constrained snapshots: a cluster-embedded decision tree approach. J. Intell. Inf. Syst. 27(3), 215–242 (2006). https://doi.org/10.1007/S10844-006-9951-9

    Article  Google Scholar 

  30. Preen, R.J., Pätzel, D.: Xcsf (2023). https://doi.org/10.5281/zenodo.8193688

  31. Pätzel, D.: dpaetzel/rslmodels.jl: v0.1.1. https://doi.org/10.5281/zenodo.10557400

  32. Pätzel, D.: dpaetzel/run-rsl-bench: v1.1.0. https://doi.org/10.5281/zenodo.10550923

  33. Pätzel, D.: dpaetzel/syn-rsl-benchs: v1.0.0 (May 2023). https://doi.org/10.5281/zenodo.7919420

  34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

    Google Scholar 

  35. Serpen, G., Sabhnani, M.: Measuring similarity in feature space of knowledge entailed by two separate rule sets. Knowl.-Based Syst. 19(1), 67–76 (2006). https://doi.org/10.1016/j.knosys.2003.11.001

    Article  Google Scholar 

  36. Setnes, M., Babuska, R., Kaymak, U., van Nauta Lemke, H.: Similarity measures in fuzzy rule base simplification. IEEE Trans. Syst. Man Cybernet. Part B (Cybernetics) 28(3), 376–386 (1998). https://doi.org/10.1109/3477.678632

  37. Stalph, P.O., Butz, M.V.: Guided evolution in XCSF. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 911–918. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2330163.2330289

  38. Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1854–1860. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1276958.1277326

  39. Tan, J., Moore, J.H., Urbanowicz, R.J.: Rapid rule compaction strategies for global knowledge discovery in a supervised learning classifier system. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, 2–6 September 2013, pp. 110–117. MIT Press (2013). https://doi.org/10.7551/978-0-262-31709-2-CH017

  40. Wang, K., Zhou, S., Fu, C.A., Yu, J.X.: Mining Changes of Classification by Correspondence Tracing, pp. 95–106. https://doi.org/10.1137/1.9781611972733.9

  41. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995)

    Article  Google Scholar 

  42. Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1(2), 211–234 (2002). https://doi.org/10.1023/A:1016535925043

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pätzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pätzel, D., Nordsieck, R., Hähner, J. (2024). Measuring Similarities in Model Structure of Metaheuristic Rule Set Learners. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635. Springer, Cham. https://doi.org/10.1007/978-3-031-56855-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56855-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56854-1

  • Online ISBN: 978-3-031-56855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics