Abstract
Errors in knowledge bases (KBs) written in a Description Logic (DL) are usually detected when reasoning derives an inconsistency or a consequence that does not hold in the application domain modelled by the KB. Whereas classical repair approaches produce maximal subsets of the KB not implying the inconsistency or unwanted consequence, optimal repairs maximize the consequence sets. In this paper, we extend previous results on how to compute optimal repairs from the DL \(\mathcal{E}\mathcal{L}\) to its extension \(\mathcal{E}\mathcal{L}^\bot \), which in contrast to \(\mathcal{E}\mathcal{L}\) can express inconsistency. The problem of how to deal with inconsistency in the context of optimal repairs was addressed previously, but in a setting where the (fixed) terminological part of the KB must satisfy a restriction on cyclic dependencies. Here, we consider a setting where this restriction is not required. We also show how the notion of optimal repairs obtained this way can be used in inconsistency- and error-tolerant reasoning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
For example, the CI \( Human \sqsubseteq \exists { loves }.{ Human }\) destroys cycle-restrictedness, whereas the CI \(\exists { loves }.{ Human }\sqsubseteq Human \) does not.
- 3.
In the CQ-case, using conjunctive instead of instance queries as repair requests may appear to be more appropriate, but this may destroy the covering property [9].
- 4.
A homomorphism is a total and functional simulation.
References
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL} \) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0372.pdf
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003). https://doi.org/10.1017/cbo9780511711787
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781139025355
Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic \(\cal{EL} \) revisited. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281, pp. 11–34. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-2_2
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL}\) TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_18
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL} \) TBoxes (extended version). LTCS-Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden (2021). https://doi.org/10.25368/2022.64
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair w.r.t. static \(\cal{EL} \) TBoxes: From quantified ABoxes back to ABoxes. In: Groth, P., et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 130–146. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_8
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair w.r.t. static \(\cal{EL} \) TBoxes: from quantified ABoxes back to ABoxes (extended version). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden (2022). https://doi.org/10.25368/2022.65
Baader, F., Kriegel, F.: Pushing optimal ABox repair from \(\cal{EL} \) towards more expressive Horn-DLs. In: Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (KR) (2022). https://doi.org/10.24963/kr.2022/3
Baader, F., Kriegel, F., Nuradiansyah, A.: Error-tolerant reasoning in the description logic \(\cal{EL} \) based on optimal repairs. In: Governatori, G., Turhan, A.Y. (eds.) RuleML+RR 2022. LNCS, vol. 13752, pp. 227–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21541-4_15
Baader, F., Kriegel, F., Nuradiansyah, A.: Treating role assertions as first-class citizens in repair and error-tolerant reasoning. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC), pp. 974–982. ACM (2023). https://doi.org/10.1145/3555776.3577630
Baader, F., Kriegel, F., Nuradiansyah, A.: Inconsistency- and error-tolerant reasoning w.r.t. optimal repairs of \(\cal{EL} ^{\bot }\) ontologies (extended version). LTCS-Report 24-02, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden (2024). https://doi.org/10.25368/2024.6
Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 319–328. AAAI Press (2018). https://cdn.aaai.org/ocs/18056/18056-78653-1-PB.pdf
Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL} \) policies. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_1
Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL}^+\). In: Proceedings of the 3rd International Conference on Knowledge Representation in Medicine (KR-MED). CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). https://ceur-ws.org/Vol-410/Paper01.pdf
Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 218–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_9
Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 775–781. IJCAI/AAAI (2013). https://www.ijcai.org/Proceedings/13/Papers/121.pdf
Calì, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over inconsistent and incomplete databases. In: Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 260–271. ACM (2003). https://doi.org/10.1145/773153.773179
Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. J. ACM 48(3), 431–498 (2001). https://doi.org/10.1145/382780.382783
Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 453–462. IEEE Computer Society (1995). https://doi.org/10.1109/sfcs.1995.492576
Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and biomedical research: a functional perspective. Brief. Bioinform. 16(6), 1069–1080 (2015). https://doi.org/10.1093/bib/bbv011
Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015). https://doi.org/10.1016/j.websem.2015.04.002
Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic \(\cal{E{}L}\). In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_8
Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\cal{EL} \). J. Symb. Comput. 45(2), 194–228 (2010). https://doi.org/10.1016/j.jsc.2008.10.007
Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web (WWW), pp. 633–640. ACM (2005). https://doi.org/10.1145/1060745.1060837
Peñaloza, R.: Error-tolerance and error management in lightweight description logics. Künstl. Intell. 34(4), 491–500 (2020). https://doi.org/10.1007/s13218-020-00684-5
Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/s10817-007-9076-z
Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5511–5519. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/777
Acknowledgements
This work has been supported by Deutsche Forschungsgemeinschaft (DFG) in projects 430150274 (Repairing Description Logic Ontologies) and 389792660 (TRR 248: Foundations of Perspicuous Software Systems).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baader, F., Kriegel, F., Nuradiansyah, A. (2024). Inconsistency- and Error-Tolerant Reasoning w.r.t. Optimal Repairs of \(\mathcal{E}\mathcal{L}^\bot \) Ontologies. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-56940-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56939-5
Online ISBN: 978-3-031-56940-1
eBook Packages: Computer ScienceComputer Science (R0)