Skip to main content

Constrained Derivation in Assumption-Based Argumentation

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Abstract

Structured argumentation formalisms provide a rich framework to formalise and reason over situations where contradicting information is present. However, in most formalisms the integral step of constructing all possible arguments is performed in an unconstrained way. For this, it may not be possible to represent situations where the reasoning process is subject to various kinds of restrictions; for example, where the possibility of communication is limited in a multi-agent setting. In this work, we introduce a general approach that allows constraining the derivation of arguments for assumption-based argumentation. We show that, under certain conditions, this reduces to eliminating rules from the given knowledge base while letting the derivation of arguments unconstrained. For this as well as for the general approach to derivation constraining, we provide an encoding into Answer Set Programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a formal definition of ABA, we refer to Sect. 2.

  2. 2.

    Available at https://www.dbai.tuwien.ac.at/research/argumentation/abasp/.

References

  1. Baroni, P., Cerutti, F., Giacomin, M.: Decomposing semantics in abstract argumentation. FLAP 10(3), 341–392 (2023). https://www.collegepublications.co.uk/downloads/ifcolog00059.pdf

  2. Baumann, R.: Splitting an argumentation framework. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 40–53. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_6

    Chapter  Google Scholar 

  3. Baumann, R., Brewka, G., Dvořák, W., Woltran, S.: Parameterized splitting: a simple modification-based approach. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0_5

    Chapter  Google Scholar 

  4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001). https://doi.org/10.1016/S0004-3702(01)00071-6

    Article  MathSciNet  Google Scholar 

  5. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997). https://doi.org/10.1016/S0004-3702(97)00015-5

    Article  MathSciNet  Google Scholar 

  6. Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-monotonic reasoning. In: Pereira, L.M., Nerode, A. (eds.) Logic Programming and Non-monotonic Reasoning, Proceedings of the Second International Workshop, Lisbon, Portugal, June 1993, pp. 171–189. MIT Press (1993)

    Google Scholar 

  7. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 385–390. AAAI Press (2007). http://www.aaai.org/Library/AAAI/2007/aaai07-060.php

  8. Caminada, M., Modgil, S., Oren, N.: Preferences and unrestricted rebut. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, 9–12 September 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 209–220. IOS Press (2014). https://doi.org/10.3233/978-1-61499-436-7-209

  9. Cyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: disputes, explanations, preferences. FLAP 4(8) (2017). http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf

  10. Cyras, K., Oliveira, T., Karamlou, A., Toni, F.: Assumption-based argumentation with preferences and goals for patient-centric reasoning with interacting clinical guidelines. Argument Comput. 12(2), 149–189 (2021). https://doi.org/10.3233/AAC-200523

    Article  Google Scholar 

  11. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_10

    Chapter  Google Scholar 

  12. Dung, P.M., Thang, P.M.: Modular argumentation for modelling legal doctrines in common law of contract. Artif. Intell. Law 17(3), 167–182 (2009). https://doi.org/10.1007/s10506-009-9076-x

    Article  Google Scholar 

  13. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-context systems. Artif. Intell. 216, 233–274 (2014). https://doi.org/10.1016/J.ARTINT.2014.07.008

    Article  MathSciNet  Google Scholar 

  14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press (1995). https://doi.org/10.7551/MITPRESS/5803.001.0001

  15. Fan, X.: On generating explainable plans with assumption-based argumentation. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 344–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03098-8_21

    Chapter  Google Scholar 

  16. Fan, X., Toni, F., Mocanu, A., Williams, M.: Dialogical two-agent decision making with assumption-based argumentation. In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Paris, France, 5–9 May 2014, pp. 533–540. IFAAMAS/ACM (2014). http://dl.acm.org/citation.cfm?id=2615818

  17. Forrester, J.W.: Gentle murder, or the adverbial Samaritan. J. Philos. 81(4), 193–197 (1984)

    Article  MathSciNet  Google Scholar 

  18. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Log. Program. 4(1–2), 95–138 (2004). https://doi.org/10.1017/S1471068403001674

    Article  MathSciNet  Google Scholar 

  19. Gonçalves, R., Alferes, J.J.: An embedding of input-output logic in deontic logic programs. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS (LNAI), vol. 7393, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31570-1_5

    Chapter  Google Scholar 

  20. Haque, H.M.U., Akhtar, S.M., Uddin, I.: Contextual defeasible reasoning framework for heterogeneous knowledge sources. Concurr. Comput. Pract. Exp. 35(15) (2023). https://doi.org/10.1002/CPE.6446

  21. Herzig, A., Lorini, E., Perrotin, E., Romero, F., Schwarzentruber, F.: A logic of explicit and implicit distributed belief. In: Giacomo, G.D., et al(eds.) ECAI 2020–24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 753–760. IOS Press (2020). https://doi.org/10.3233/FAIA200163

  22. Lehtonen, T., Wallner, J.P., Järvisalo, M.: Declarative algorithms and complexity results for assumption-based argumentation. J. Artif. Intell. Res. 71, 265–318 (2021). https://doi.org/10.1613/jair.1.12479

    Article  MathSciNet  Google Scholar 

  23. Liao, B.: Toward incremental computation of argumentation semantics: a decomposition-based approach. Ann. Math. Artif. Intell. 67(3–4), 319–358 (2013). https://doi.org/10.1007/S10472-013-9364-8

    Article  MathSciNet  Google Scholar 

  24. Liao, B., Pardo, P., Slavkovik, M., van der Torre, L.: The jiminy advisor: moral agreements among stakeholders based on norms and argumentation. J. Artif. Intell. Res. 77, 737–792 (2023). https://doi.org/10.1613/jair.1.14368

    Article  MathSciNet  Google Scholar 

  25. Liao, B., Slavkovik, M., van der Torre, L.W.N.: Building jiminy cricket: an architecture for moral agreements among stakeholders. CoRR abs/1812.04741 (2018). http://arxiv.org/abs/1812.04741

  26. Linsbichler, T.: Splitting abstract dialectical frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, 9–12 September 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 357–368. IOS Press (2014). https://doi.org/10.3233/978-1-61499-436-7-357

  27. Makinson, D., van der Torre, L.W.N.: Input/output logics. J. Philos. Log. 29(4), 383–408 (2000). https://doi.org/10.1023/A:1004748624537

    Article  MathSciNet  Google Scholar 

  28. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013). https://doi.org/10.1016/j.artint.2012.10.008

    Article  MathSciNet  Google Scholar 

  29. Modgil, S., Prakken, H.: The ASPIC\({}^{{+}}\) framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014). https://doi.org/10.1080/19462166.2013.869766

    Article  Google Scholar 

  30. Modgil, S., Prakken, H.: Abstract rule-based argumentation. FLAP 4(8) (2017). http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf

  31. Pigozzi, G., van der Torre, L.: Arguing about constitutive and regulative norms. J. Appl. Non Class. Logics 28(2–3), 189–217 (2018). https://doi.org/10.1080/11663081.2018.1487242

    Article  MathSciNet  Google Scholar 

  32. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2010). https://doi.org/10.1080/19462160903564592

    Article  Google Scholar 

  33. Rahwan, I.: Guest editorial: argumentation in multi-agent systems. Auton. Agents Multi Agent Syst. 11(2), 115–125 (2005). https://doi.org/10.1007/s10458-005-3079-0

    Article  Google Scholar 

  34. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)

    Book  Google Scholar 

  35. Sun, X., van der Torre, L.: Combining constitutive and regulative norms in input/output logic. In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON 2014. LNCS (LNAI), vol. 8554, pp. 241–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08615-6_18

    Chapter  Google Scholar 

  36. von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951). https://doi.org/10.1093/mind/lx.237.1

    Article  Google Scholar 

  37. Xie, J., Liu, C.C.: Multi-agent systems and their applications. J. Int. Council Electr. Eng. 7(1), 188–197 (2017)

    Article  Google Scholar 

  38. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21 (2017). https://doi.org/10.1016/j.artint.2017.07.002, https://www.sciencedirect.com/science/article/pii/S0004370217300759

Download references

Acknowledgments

The authors thank the reviewers for their helpful comments to improve the original version of this paper. This research has been supported by Vienna Science and Technology Fund (WWTF) through project ICT19-065 and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101034440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Buraglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buraglio, G., Dvořák, W., Rapberger, A., Woltran, S. (2024). Constrained Derivation in Assumption-Based Argumentation. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics