Abstract
We discover a connection between finding subset-maximal repairs for sets of functional and inclusion dependencies, and computing extensions within argumentation frameworks (AFs). We study the complexity of existence of a repair, and deciding whether a given tuple belongs to some (or every) repair, by simulating the instances of these problems via AFs. We prove that subset-maximal repairs under functional dependencies correspond to the naive extensions, which also coincide with the preferred and stable extensions in the resulting AFs. For inclusion dependencies one needs a pre-processing step on the resulting AFs in order for the extensions to coincide. Allowing both types of dependencies breaks this relationship between extensions and only preferred semantics captures the repairs. Finally, we establish that the complexities of the above decision problems are \( {\textbf {NP}}\)-complete and \(\boldsymbol{\mathrm {\Pi }}^{ {\textbf {P}}}_2\)-complete, when both functional and inclusion dependencies are allowed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We borrow this notation and write \(\textsf{dep}(\boldsymbol{x};\boldsymbol{y})\) and \(\boldsymbol{x}\subseteq \boldsymbol{y}\) for FDs and IDs, respectively.
- 2.
We disallow the empty set (\(\emptyset \)) in extensions for the sake of compatibility with repairs. Nevertheless, one can allow \(\emptyset \) as an extension in AFs and the empty database as repairs, without affecting our complexity results.
References
Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and complexity. In: Fagin, R. (ed.) Database Theory - ICDT 2009, 12th International Conference, Proceedings. ACM International Conference Proceeding Series, St. Petersburg, Russia, 23–25 March 2009, vol. 361, pp. 31–41. ACM (2009). https://doi.org/10.1145/1514894.1514899
Arenas, M., Bertossi, L.E., Chomicki, J.: Scalar aggregation in FD-inconsistent databases. In: den Bussche, J.V., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 39–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_3
Arieli, O., Borg, A., Heyninck, J.: A review of the relations between logical argumentation and reasoning with maximal consistency. Ann. Math. Artif. Intell. 87(3), 187–226 (2019). https://doi.org/10.1007/S10472-019-09629-7
Arioua, A., Croitoru, M.: Dialectical characterization of consistent query explanation with existential rules. In: Markov, Z., Russell, I. (eds.) Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2016, Key Largo, Florida, USA, 16–18 May 2016, pp. 621–625. AAAI Press (2016). http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12800
Arioua, A., Croitoru, M., Vesic, S.: Logic-based argumentation with existential rules. Int. J. Approx. Reason. 90, 76–106 (2017). https://doi.org/10.1016/J.IJAR.2017.07.004
Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent datalog +/- knowledge bases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R.R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 203–219. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_15
Arioua, A., Tamani, N., Croitoru, M., Buche, P.: Query failure explanation in inconsistent knowledge bases using argumentation. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014. Frontiers in Artificial Intelligence and Applications, Atholl Palace Hotel, Scottish Highlands, UK, 9–12 September 2014, vol. 266, pp. 101–108. IOS Press (2014). https://doi.org/10.3233/978-1-61499-436-7-101
Barceló, P., Fontaine, G.: On the data complexity of consistent query answering over graph databases. J. Comput. Syst. Sci. 88, 164–194 (2017)
Bertossi, L.E.: Consistent query answering in databases. SIGMOD Rec. 35(2), 68–76 (2006). https://doi.org/10.1145/1147376.1147391
Bertossi, L.E.: Database repairs and consistent query answering: origins and further developments. In: Suciu, D., Skritek, S., Koch, C. (eds.) Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, 30 June–5 July 2019, pp. 48–58. ACM (2019). https://doi.org/10.1145/3294052.3322190
Bienvenu, M., Bourgaux, C.: Querying and repairing inconsistent prioritized knowledge bases: complexity analysis and links with abstract argumentation. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 141–151 (2020). https://doi.org/10.24963/KR.2020/15
Bienvenu, M., Bourgaux, C.: Inconsistency handling in prioritized databases with universal constraints: complexity analysis and links with active integrity constraints. In: Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning, pp. 97–106 (2023). https://doi.org/10.24963/kr.2023/10
Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query answers over inconsistent DL-lite knowledge bases. J. Artif. Intell. Res. 64, 563–644 (2019)
ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent query answering. In: Proceedings of the 15th International Conference on Database Theory, ICDT 2012, pp. 22–33 (2012)
Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1), 90–121 (2005). https://doi.org/10.1016/j.ic.2004.04.007. https://www.sciencedirect.com/science/article/pii/S0890540105000179
Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655_28
Croitoru, M., Thomopoulos, R., Vesic, S.: Introducing preference-based argumentation to inconsistent ontological knowledge bases. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 594–602. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8_42
Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 15–29. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40381-1_2
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. AI 77(2), 321–357 (1995)
Dvorák, W., Dunne, P.E.: Computational problems in formal argumentation and their complexity. FLAP 4(8), 2557–2622 (2017)
Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Dichotomies in the complexity of preferred repairs. In: Milo, T., Calvanese, D. (eds.) Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, 31 May–4 June 2015, pp. 3–15. ACM (2015). https://doi.org/10.1145/2745754.2745762
Hannula, M., Hella, L.: Complexity thresholds in inclusion logic. Inf. Comput. 287, 104759 (2022). https://doi.org/10.1016/J.IC.2021.104759
Hannula, M., Wijsen, J.: A dichotomy in consistent query answering for primary keys and unary foreign keys. In: Libkin, L., Barceló, P. (eds.) PODS 2022: International Conference on Management of Data, Philadelphia, PA, USA, 12–17 June 2022, pp. 437–449. ACM (2022). https://doi.org/10.1145/3517804.3524157
Ho, L., Arch-Int, S., Acar, E., Schlobach, S., Arch-Int, N.: An argumentative approach for handling inconsistency in prioritized datalog\(\pm \)ontologies. AI Commun. 35(3), 243–267 (2022). https://doi.org/10.3233/AIC-220087
Kimelfeld, B., Livshits, E., Peterfreund, L.: Detecting ambiguity in prioritized database repairing. In: Benedikt, M., Orsi, G. (eds.) 20th International Conference on Database Theory (ICDT 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 68, pp. 17:1–17:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.ICDT.2017.17. http://drops.dagstuhl.de/opus/volltexte/2017/7048
Kimelfeld, B., Livshits, E., Peterfreund, L.: Counting and enumerating preferred database repairs. Theor. Comput. Sci. 837, 115–157 (2020). https://doi.org/10.1016/J.TCS.2020.05.016
Livshits, E., Kimelfeld, B., Roy, S.: Computing optimal repairs for functional dependencies. ACM Trans. Database Syst. 45(1), 4:1–4:46 (2020). https://doi.org/10.1145/3360904
Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 179–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11965893_13
Mahmood, Y.: Parameterized aspects of team-based formalisms and logical inference (2022). https://doi.org/10.15488/13064. https://www.tib.eu/de/suchen/id/base%3Ae4c211ee856f89407f6d9a67b4c100e3fb7eafdd
Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246 (2012). https://doi.org/10.1007/S10472-012-9288-8
Staworko, S., Chomicki, J.: Consistent query answers in the presence of universal constraints. Inf. Syst. 35(1), 1–22 (2010). https://doi.org/10.1016/J.IS.2009.03.004
Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
Wijsen, J.: Condensed representation of database repairs for consistent query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 378–393. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36285-1_25
Young, A.P., Modgil, S., Rodrigues, O.: Prioritised default logic as argumentation with partial order default priorities. CoRR abs/1609.05224 (2016). http://arxiv.org/abs/1609.05224
Yun, B., Vesic, S., Croitoru, M.: Sets of attacking arguments for inconsistent datalog knowledge bases. In: Prakken, H., Bistarelli, S., Santini, F., Taticchi, C. (eds.) Computational Models of Argument - Proceedings of COMMA 2020. Frontiers in Artificial Intelligence and Applications, Perugia, Italy, 4–11 September 2020, vol. 326, pp. 419–430. IOS Press (2020). https://doi.org/10.3233/FAIA200526
Acknowledgment
The work has received funding from the European Union’s Horizon Europe research and innovation programme within project ENEXA (101070305) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): TRR 318/1 2021 - 438445824 and VI 1045-1/1 - 432788559. The first author expresses gratitude to Arne Meier (Leibniz University Hannover) for the invitation to discuss the topic in Hannover, as well as for motivating and guiding the discussion on this subject.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mahmood, Y., Virtema, J., Barlag, T., Ngomo, AC.N. (2024). Computing Repairs Under Functional and Inclusion Dependencies via Argumentation. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-56940-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56939-5
Online ISBN: 978-3-031-56940-1
eBook Packages: Computer ScienceComputer Science (R0)