Skip to main content

Propositional Variable Forgetting and Marginalization: Semantically, Two Sides of the Same Coin

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Abstract

This paper investigates variable forgetting and marginalization in propositional logic. We show that for finite signatures and infinite signatures, variable forgetting and marginalization are corresponding operations, i.e., they yield semantically equivalent outputs for respective complementary inputs. This observation holds for formulas and also for sets of formulas. For formulas, both operations, variable forgetting and marginalization, are shown to be compatible with disjunctions, but not with conjunction, implication and negation. For general sets of formulas, a consequence is that the element-wise application of these operations to a set of formulas and the application to a formula equivalent to this set are not equivalent in general. However, for every deductively closed set \( X \), we show that the element-wise application of variable forgetting or marginalization, respectively, and the application to any formula equivalent to \( X \) are equivalent. This latter observation is important because deductively closed sets play an important role in many areas, e.g., in logic-based approaches to knowledge representation and databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The proofs are available at: https://kai-sauerwald.de/pub/FoIKS2024.pdf.

  2. 2.

    We thank the anonymous reviewer for phrasing this interrelation so nicely.

  3. 3.

    Closure operators satisfy (Monotonicity), (Idempotency) and (Extensitivity), i.e., \( X\subseteq Cl(X) \).

References

  1. Beierle, C., Kern-Isberner, G.: Semantical investigations into nonmonotonic and probabilistic logics. Ann. Math. Artif. Intell. 65(2–3), 123–158 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beierle, C., Kern-Isberner, G., Sauerwald, K., Bock, T., Ragni, M.: Towards a general framework for kinds of forgetting in common-sense belief management. KI - Künstliche Intelligenz 33(1), 57–68 (2019)

    Article  Google Scholar 

  3. Boole, G.: An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London (1854)

    Book  Google Scholar 

  4. Delgrande, J.P.: A knowledge level account of forgetting. J. Artif. Intell. Res. 60, 1165–1213 (2017)

    Article  MathSciNet  Google Scholar 

  5. van Ditmarsch, H., Herzig, A., Lang, J., Marquis, P.: Introspective forgetting. Synthese 169(2), 405–423 (2009)

    Article  MathSciNet  Google Scholar 

  6. Eiter, T., Kern-Isberner, G.: A brief survey on forgetting from a knowledge representation and reasoning perspective. KI - Künstliche Intelligenz 33(1), 9–33 (2019)

    Article  Google Scholar 

  7. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  Google Scholar 

  8. Gonçalves, R., Knorr, M., Leite, J.: Forgetting in answer set programming - a survey. Theory Pract. Log. Program. 23(1), 111–156 (2023)

    Article  MathSciNet  Google Scholar 

  9. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change. Artif. Intell. 52, 263–294 (1991)

    Article  MathSciNet  Google Scholar 

  10. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + independence: New postulates for nonmonotonic reasoning from conditional belief bases. In: Calvanese, D., Erdem, E. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, pp. 560–571. IJCAI.org (2020)

    Google Scholar 

  11. Kern-Isberner, G., Bock, T., Beierle, C., Sauerwald, K.: Axiomatic evaluation of epistemic forgetting operators. In: Barták, R., Brawner, K.W. (eds.) Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, Sarasota, Florida, USA, 19–22 May 2019, pp. 470–475. AAAI Press (2019)

    Google Scholar 

  12. Kern-Isberner, G., Bock, T., Sauerwald, K., Beierle, C.: Belief change properties of forgetting operations over ranking functions. In: Nayak, A., Sharma, A. (eds.) PRICAI 2019. LNCS, vol. 11670, pp. 459–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8_37

    Chapter  Google Scholar 

  13. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision. In: Sierra, C. (ed.) Proceedings International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 1131–1137. ijcai.org (2017)

    Google Scholar 

  14. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in extensions of the description logic EL. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, 27–30 July 2009. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

    Google Scholar 

  15. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lang, J., Marquis, P.: Reasoning under inconsistency: a forgetting-based approach. Artif. Intell. 174(12–13), 799–823 (2010)

    Article  MathSciNet  Google Scholar 

  17. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on Relevance, pp. 154–159. AAAI Press, Menlo Park (1994)

    Google Scholar 

  18. Nikitina, N., Rudolph, S.: Expexpexplosion: uniform interpolation in general EL terminologies. In: Raedt, L.D., et al. (eds.) 20th European Conference on Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence, ECAI 2012 (PAIS-2012) System Demonstrations Track, Montpellier, France, 27–31 August 2012, Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 618–623. IOS Press (2012)

    Google Scholar 

  19. Parikh, R.: Beliefs, Belief Revision, and Splitting Languages, pp. 266–278. Center for the Study of Language and Information, USA (1999)

    Google Scholar 

  20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  21. Sauerwald, K., Kern-Isberner, G., Becker, A., Beierle, C.: From forgetting signature elements to forgetting formulas in epistemic states. In: de Saint-Cyr, F.D., Öztürk-Escoffier, M., Potyka, N. (eds.) SUM 2022. LNCS, vol. 13562, pp. 92–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18843-5_7

    Chapter  Google Scholar 

  22. Sen, A.: Social choice theory. In: Arrow, K., Intriligator, M. (eds.) Handbook of Mathematical Economics, vol. III, pp. 1073–1181. Elsevier Science Publishers (1986)

    Google Scholar 

  23. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer Academic Publishers (1988)

    Google Scholar 

  24. Su, K., Sattar, A., Lv, G., Zhang, Y.: Variable forgetting in reasoning about knowledge. J. Artif. Intell. Res. 35, 677–716 (2009)

    Article  MathSciNet  Google Scholar 

  25. Thevapalan, A., Kern-Isberner, G., Howey, D., Beierle, C., Meyer, R.G., Nietzke, M.: Decision support core system for cancer therapies using ASP-HEX. In: Brawner, K., Rus, V. (eds.) Proceedings of the Thirty-First International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018, Melbourne, Florida, USA, 21–23 May 2018, pp. 531–536. AAAI Press (2018)

    Google Scholar 

  26. Wijs, A.: Forgetting the time in timed process algebra. In: Hatcliff, J., Zucca, E. (eds.) FMOODS FORTE 2010. LNCS, vol. 6117, pp. 110–124. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7_10

    Chapter  Google Scholar 

  27. Zhang, Y., Zhou, Y.: Knowledge forgetting: properties and applications. Artif. Intell. 173(16), 1525–1537 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their constructive and helpful comments. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Priority Research Program “Intentional Forgetting in Organizations” (SPP 1921; grant BE 1700/10-1 awarded to Christoph Beierle and grant KE 1413/10-1 awarded to Gabriele Kern-Isberner).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Sauerwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sauerwald, K., Beierle, C., Kern-Isberner, G. (2024). Propositional Variable Forgetting and Marginalization: Semantically, Two Sides of the Same Coin. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics